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Abstract. In this paper, we study the Elevated Mean problem and the anomaly detection

problem. In the anomaly detection problem, there is a network with a certain measure of
behaviors of the nodes, and the task is to distinguish whether the nodes behave normally or

an anomalous cluster exists based on observations of the nodes in the network. The anomaly

detection problem has a wide range of applications such as network intrusion detection and
disease outbreak detection. The Elevated Mean problem arises naturally as the optimal test

for a general hypothesis-testing formulation of anomaly detection, in which vertex features

follow an exponential-family distribution and candidate anomalous clusters are connected
induced subgraphs of the network.

The paper is structured into two parts. In the first part, we study the Elevated Mean
problem from a worst-case perspective. We present two the first non-trivial polynomial-time

approximation algorithms for the Elevated Mean problem and the k-Elevated Mean problem

via black-box reductions to the Quota Prize-Collecting Steiner Tree problem and the Budget
Prize-Collecting Steiner Tree problem, yielding constant factor approximations.

In the second part, we focus on the statistical setting of anomaly detection. Using the

constant-factor approximations for the Elevated Mean problem and the k-Elevated Mean
problem in the first part, we show the first polynomial-time decision rule TEM that asymp-

totically achieves the minmax bound for the Elevated Mean scan statistics. Besides being

polynomial-time solvable, the strength of this decision rule also lies in its generality of detect-
ing anomalous clusters among the class of connected induced subgraphs, without relying on

additional assumptions used by previous work. We also prove novel, more general separability

results using the rule TEM .
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1. Introduction

The task of anomaly detection over network has a wide range of applications. To better
motivate the research in this paper, we start by describing three canonical applications:

• Network intrusion: With the advent of networks, the growing scale and broadcast
ability of networks render them vulnerable to external malicious attacks, which could
result in loss of valuable data or compromise of confidentiality. Thus, the task of detect-
ing network intrusion is critical in network security. Due to the structure of the network,
network intrusions often take place in a cluster of connected nodes, which often exhibit
anomalous behaviors compared to the normal nodes in the network.

• Disease outbreak: Disease outbreak detection is of great importance in contemporary
society, as the transmission of infectious disease is greatly facilitated by the large volume
of population migration. In order to minimize the severity and the scope of the pandemic,
early and precise monitoring of disease outbreak is crucial. Common techniques for
disease surveillance incorporate data from hospital visits, pharmaceutical orders, and
laboratory tests together with geographical information.

• Ecosystem disturbance: Disturbance in ecosystem could have negative impact on the
biodiversity in the region, and the effect could take place quickly and be long-lasting,
particularly when such disturbances are man-made. As a result, detecting anomalous
behavior in an ecosystem in a timely manner is essential to environmental preservation
and resource management, and such detection often relies on data obtained from field
measurement in some geographical location.

In the simplest abstract formulation of the anomaly detection problem, we are given graph
and a feature value for each vertex, which may come from an underlying statistical model.
The anomalous clusters are then defined as connected induced subgraphs whose feature values
significantly depart from a baseline distribution. The connectedness requirement accounts for the
assumption that anomalous behavior is localized by the network topology. For example, disease
outbreak would usually happen in a contiguous geographical region, and network intrusion at
the initial stage would affect a small cluster of connected nodes.

A paradigmatic approach to the anomaly detection problem is the method of scan statistics [3],
which has been studied not only for graph models, but also for spatio-temporal models. In this
setting, anomalous clusters are detected by maximizing a score function over the feature values
of the nodes in the cluster. Depending on the application, the scan statistics method can either
be parametric or non-parametric. Parametric scan statistics assumes that the observations of the
vertices follow certain distribution, such as the Gaussian distribution or the Poisson distribution.
On the other hand, non-parametric scan statistics does not assume the underlying distribution
on the graph, and instead first estimates a p-value for each vertex and then looks for a subgraph
with high numbers of significant p-values [11].

In this paper, we focus on the Elevated Mean scan statistics, a parametric scan statistics aris-
ing when the feature values follow exponential-family distributions. We show how approximate
solutions to the Elevated Mean problem can be computed in polynomial time to give decision
rules for the anomaly detection problem. Our only assumptions on the class of potential anoma-
lous clusters are that they are connected and that they have sizes less than or equal to some
number k ∈ [1, |V |].

1.1. Related Work. Earlier work has either focused on statistical guarantee of solving the exact
Elevated Mean problem [3] without considering the computational aspect, or convex relaxation
that can be efficiently solved [2, 19, 20] but fail to achieve any approximation guarantees and
lead to statistical-computational trade-offs.

There are also heuristic algorithms for the anomaly detection problem based on the approach
of simulated annealing using non-compactness penalty [12], iterative convergence to local opti-
mum of additive scan statistics [23], or other machine learning approaches.
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A number of other methods based on parametric scan statistics restrict the problem to special
graphs or pose relatively strong assumptions on the class of potential anomalous clusters. For
example, [1] scans for axis-parallel rectangles in the plane as potential anomalous clusters, [3]
considers the case where the underlying graph is embedded into the Euclidean space and the
potential anomalous clusters are bi-Lipschitz deformations of balls, and the case where the graph
is a finite-dimensional grid, and [19] works on 2D grid and assumes that the potential anomalous
clusters form subgraphs with internal conductance at least a certain value.

1.2. Structure of the Paper. In this paper, we follow the generalized likelihood ratio test
schema [3] based on Elevated Mean scan statistics for connected subgraph detection. The general
structure of the paper is as follows. We first describe the problems of interest in Section 2, and
study the computational aspect of the Elevated Mean problem in Section 3, where we show
a (3 + ε)-approximation algorithm for the k-Elevated Mean problem in Theorem 3.11, and a√

2-approximation algorithm for the Elevated Mean problem in Theorem 3.12. In Section 4, we
formalize the anomaly detection problem as a hypothesis testing problem, and give a polynomial
time decision rule using the constant-factor approximation algorithms for the Elevated Mean
problem in Section 3. In Section 5, we analyze the separability of the anomaly detection problem
based on the maximum degree of the underlying graph, and we show an asymptotically tight
lower bound for the expected optimum scan statistics under the null hypothesis for the Gaussian
model in Section 6.

2. Problem

In this section, we introduce the Elevated Mean problem, the anomaly detection problem,
and the relevant variants of the Prize-Collecting Steiner Tree problem.

2.1. Elevated Mean Problem. The input to the Elevated Mean problem is a pair of undirected
graph G = (V,E) and a vertex-valued function p : V → R≥0. The objective is to maximize the
following scan statistics over a class C of connected induced subgraphs of G:∑

v∈V (H) p(v)√
|V (H)|

,(2.1)

In this paper, we consider two types of Elevated Mean problem:

• When the class C is the set of all connected induced subgraphs of G, we refer to this
problem as the (unrestricted) Elevated Mean problem.

• When the class C is of the form

C = C≤k = {connected induced subgraphs of G of size ≤ k},
where k ∈ N is an additional input parameter, we refer to this problem as the k-Elevated
Mean problem.

Remark 2.1. Note that the Elevated Mean problem is a special case of the k-Elevated Mean
problem. When k = n, C≤k = C≤n is the set of all connected induced subgraphs of G. In this
paper, we will use n to denote the number of vertices in a graph.

Besides the optimization problems above, we also consider the Elevated Mean problem in the
context of anomaly detection. The task of anomaly detection is concerned with the following
hypothesis testing problem. Under the null hypothesis H0, the associated value of each vertex of
the graph follows some i.i.d. distribution, so there is no anomalous cluster in the graph. Under the
alternative hypothesis H1, the associated values of the vertices in a connected induced subgraph
follow a different distribution from that of the rest of the vertices in the graph, and these vertices
in this anomalous cluster appear to have values higher than the rest of the graph. The precise
formulation of the anomaly detection problem will be presented in Section 4, where we will
optimize the scan statistics (2.1) to get a decision rule for this hypothesis testing problem.

In this paper, we will first present two constant-factor approximation algorithms for the
Elevated Mean problem and the k-Elevated Mean problem, with which we derive a decision rule
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for the anomaly detection problem, and then show conditions under which we can separate the
hypotheses H0 and H1 using this rule.

2.2. Prize-Collecting Steiner Tree Problem and Its Variants. The input to the Prize-
Collecting Steiner Tree problem (PCST) is a tuple of undirected graph G = (V,E), a vertex-
valued function p : V → R≥0, an edge-valued function c : E → R≥0, and a root vertex r ∈ V .
The objective is find a subtree T ′ = (V ′, E′) of G that contains the root r and minimizes the
following quantity: ∑

e∈E′
c(e) +

∑
v 6∈V ′

p(v).

Intuitively, think of p(v) as the prize associated with vertex v and c(e) as the cost associated
with edge e. The objective then becomes to miss as few prizes on the vertices not covered by
the subtree T ′ and to spend as little cost on the edges of the subtree T ′ as possible.

To derive the constant-factor approximation algorithms for the Elevated Mean problem and
the k-Elevated Mean problem, we consider the following variants of PCST, initially studied by
Johnson, Minkoff, and Phillips [15]:

• Quota Prize-Collecting Steiner Tree:
The input to the Quota Prize-Collecting Steiner Tree problem (Quota PCST) is a

tuple of undirected graph G = (V,E), a vertex-valued function p : V → R≥0, an edge-
valued function c : E → R≥0, a root vertex r ∈ V , and a quota Q ≥ 0. The objective
is to find a subtree T ′ = (V ′, E′) that contains the root r and minimizes the following
quantity: ∑

e∈E′
c(e),

subject to
∑
v∈V ′ p(v) ≥ Q.

• Budget Prize-Collecting Steiner Tree:
The input to the Budget Prize-Collecting Steiner Tree problem (Budget PCST) is a

tuple of undirected graph G = (V,E), a vertex-valued function p : V → R≥0, an edge-
valued function c : E → R≥0, a root vertex r ∈ V , and a budget B ≥ 0. The objective
is to find a subtree T ′ = (V ′, E′) that contains the root r and maximizes the following
quantity: ∑

v∈V ′
p(v),

subject to
∑
e∈E′ c(e) ≤ B.

In other words, the objective of the Quota PCST is to spend the minimum amount of cost on
edges of the subtree T ′ that collects at least a given quota Q on the vertices, while the objective
of the Budget PCST is to collect the maximum amount of prizes on vertices of the subtree T ′

that costs at most a given budget B on the edges.

Remark 2.2. The Quota PCST and the Budget PCST problems above are the rooted versions.
The approximation algorithms for the rooted versions of Quota PCST and Budget PCST also
yield approximation algorithms with the same approximation guarantees for the corresponding
unrooted versions, by trying all vertices as the root and picking the best solution.

By losing a factor of n in the running time of the approximation algorithms, we will use the
rooted versions and the unrooted versions of the Quota PCST and the Budget PCST inter-
changeably from now on.

Earlier work has studied both the Quota PCST and the Budget PCST, both of which have
constant-factor approximation algorithms [15, 17, 18]. We will show how these approximation
algorithms yield constant-factor approximation algorithms for the Elevated Mean problem and
the k-Elevated Mean problem.
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3. Algorithm

In this section, we describe two constant-factor approximation algorithms for the Elevated
Mean problem and the k-Elevated Mean problem respectively. Recall the definition of bi-criteria
approximation algorithms:

Definition 3.1. Algorithm A is an (α, β) bi-criteria approximation algorithm for the k-Elevated
Mean problem if for every instance (G, p, k), A returns a connected induced subgraph G[V ′] that
satisfies

1

α
·OPT ≤

∑
v∈V ′ p(v)√
|V ′|

and that G[V ′] ∈ C≤β·k, i.e., |V ′| ≤ β · k, where OPT is the value of the optimum solution in
C≤k.

Definition 3.2. Algorithm A is an (α, β) bi-criteria approximation algorithm for the Quota
PCST if for every instance (G, p, c,Q), A returns a subtree T ′ = (V ′, E′) of G that satisfies∑

e∈E′
c(e) ≤ α ·OPT,

and achieves quota

Q

β
≤
∑
v∈V ′

p(v),

where OPT is the value of the optimum solution that achieves quota at least Q.

Definition 3.3. Algorithm A is an (α, β) bi-criteria approximation algorithm for the Budget
PCST if for every instance (G, p, c, B), A returns a subtree T ′ = (V ′, E′) of G that satisfies

OPT

α
≤
∑
v∈V ′

p(v),

and spends cost ∑
e∈E′

c(e) ≤ β ·B,

where OPT is the value of the optimum solution that spends cost at most B.

3.1. Reduction to the Budget PCST. In what follows, we will focus the attention on the k-
Elevated Mean problem. Theorem 3.4 shows how good bi-criteria approximation algorithms for
the Budget PCST yield bi-criteria approximation algorithms for the k-Elevated Mean problem
with good approximation guarantees.

Theorem 3.4. An (α, β) bi-criteria approximation algorithm A for the Budget PCST yields an(
α
√
β − β−1

k , β − β−1
k

)
bi-criteria approximation algorithm B for the k-Elevated Mean problem,

using k calls of A.

Proof. Suppose A is an (α, β) bi-criteria approximation algorithm for the Budget PCST. Let
(G = (V,E), p, k) be an instance of the k-Elevated Mean problem. We first describe the algorithm
B for the k-Elevated Mean problem.

Let c : E → R≥0 be the cost function that assigns a cost of 1 to every edge.
For budget B = 0, 1, ..., k − 1, apply A on the Budget PCST instance (G, p, c, B). Let

TB = (VB , EB) be the subtree returned by A in the corresponding iteration. Among all the
subtrees {TB}, return the connected induced subgraph G[VB ] corresponding to the subtree that
maximizes the scan statistics ∑

v∈VB
p(v)√

|VB |
as the output of B.
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Now we show that B achieves an approximation ratio of α
√
β − β−1

k and returns a connected

induced subgraph of size ≤
(
β − β−1

k

)
·k. Let G[VOPT] ∈ C≤k be the optimum connected induced

subgraph of the instance (G, p, k) of the k-Elevated Mean problem. Consider the iteration
B = B0 = |VOPT| − 1 of the algorithm B. Let TB0

= (VB0
, EB0

) be the subtree returned by
A in this iteration. Let T ′ = (V ′, E′) be the optimum subtree for the Budget PCST instance
(G, p, c, B0). Then, by Definition 3.3, the following holds:∑

v∈VB0

p(v) ≥ 1

α
·
∑
v∈V ′

p(v),(3.1)

∑
e∈EB0

c(e) ≤ β ·B0.(3.2)

Since the cost function c assigns unit cost to every edge, the budget inequality (3.2) translates
to

|VB0 | − 1 = |EB0 | ≤ β ·B0 = β · (|VOPT| − 1),(3.3)

|VB0
| ≤

(
β − β − 1

|VOPT|

)
· |VOPT|.(3.4)

Note that by examining (3.2) for other iterations of B and obtaining an inequality similar to

(3.4), we know that the connected induced subgraph returned by B has size ≤
(
β − β−1

k

)
· k.

Since G[VOPT] ∈ C≤k is a connected induced subgraph of G, there exists a subtree T̂ =

(VOPT, Ê) of G that spans VOPT. Note that T̂ is a solution to the Budget PCST instance
(G, p, c, B0) that satisfies the budget constraint:∑

e∈Ê

c(e) = |Ê| = |VOPT| − 1 = B0.

Thus, we have ∑
v∈VOPT

p(v) ≤
∑
v∈V ′

p(v),(3.5)

as T ′ = (V ′, E′) is the optimum subtree for the Budget PCST instance (G, p, c, B0).
From (3.1), (3.4), and (3.5), we conclude that

VAL ≥
∑
v∈VB0

p(v)√
|VB0
|

≥
1
α ·
∑
v∈V ′ p(v)√(

β − β−1
|VOPT|

)
· |VOPT|

≥
1
α√(

β − β−1
k

) ·
∑
v∈VOPT

p(v)√
|VOPT|

=
1

α
√
β − β−1

k

·OPT,

where VAL is the value of the solution returned by B and OPT is the value of the optimum
solution to the k-Elevated Mean problem instance. �
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input

An undirected graph G = (V,E)

A function p : V → R≥0
An integer k ∈ [1, n]

An (α, β) bi-criteria approximation algorithm A for the Budget PCST

returns

A connected induced subgraph H ∈ C≤k of G

begin

Define a function c(e) 7→ 1 for every e ∈ E
B ← 0

S ←
{

arg max
v∈V

p(v)

}
while B ≤ k − 1

TB = (VB , EB)← A(G, p, c, B)

if 1√
|VB |

∑
v∈VB

p(v) > 1√
|S|

∑
v∈S p(v) then

S ← VB
end if

B ← B + 1

end while

return G[S]

end

Figure 1. Algorithm in Theorem 3.4
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It is also easy to get a trade-off between the running time and the approximation ratio of
the algorithm B in Theorem 3.4. If we want a bi-criteria approximation algorithm for the k-
Elevated Mean problem using fewer calls of the bi-criteria approximation algorithm A for the
Budget PCST without sacrificing the approximation ratio too much, Proposition 3.5 provides
an algorithm under the same framework of Theorem 3.4.

Proposition 3.5. For every ε > 0, an (α, β) bi-criteria approximation algorithm A for the

Budget PCST yields an

(
α
√
β(1 + ε)− β(1+ε)−1

k , β − β−1
k

)
bi-criteria approximation algorithm

B for the k-Elevated Mean problem, using O(log1+ε k) calls of A.

Proof. Essentially, algorithm B follows the same idea as the algorithm in Theorem 3.4 but uses
a geometric search over a set of O(log1+ε k) budgets instead of the set of budgets {0, 1, ..., k−1}.

For budget B = 0, 1, (1+ε), ..., (1+ε)i, applyA on the corresponding Budget PCST instance as
described in Theorem 3.4. Let TB = (VB , EB) be the subtree returned by A in the corresponding
iteration. When B ≥ k − 1, set B = k − 1 and perform the last iteration before stopping the
geometric search over B, so the number of iterations is O(log1+ε k). Among all the subtrees {TB},
return the connected induced subgraph G[VB ] corresponding to the subtree that maximizes the
scan statistics ∑

v∈VB
p(v)√

|VB |
as the output of B. By examining the budget inequality (3.2) for each iteration, it is not hard

to see that the connected induced subgraph returned by B has size ≤
(
β − β−1

k

)
· k.

To show that B achieves an approximation ratio of α
√
β(1 + ε)− β(1+ε)−1

k , we make one

slight modification to the analysis in Theorem 3.4. Let G[VOPT] ∈ C≤k be the optimum con-
nected induced subgraph of the instance of the k-Elevated Mean problem. Note that during the
geometric search of the budget values, there is an iteration B = B0 such that

|VOPT| − 1 ≤ B0 ≤ (|VOPT| − 1) · (1 + ε).(3.6)

Consider such iteration B = B0 of the algorithm B. Let TB0
= (VB0

, EB0
) be the subtree

returned by A in this iteration. Let T ′ = (V ′, E′) be the optimum subtree for the Budget PCST
instance of this iteration. Then, (3.1) and (3.5) still hold, and from the budget inequality (3.2)
we get

|VB0
| − 1 = |EB0

| ≤ β ·B0 ≤ β · (|VOPT| − 1) · (1 + ε),(3.7)

|VB0
| ≤

(
β(1 + ε)− β(1 + ε)− 1

|VOPT|

)
· |VOPT|.(3.8)

Combining (3.1), (3.5), and (3.7), we conclude that the algorithm B returns a solution of
value

VAL ≥
∑
v∈VB0

p(v)√
|VB0 |

≥
1
α ·
∑
v∈V ′ p(v)√(

β(1 + ε)− β(1+ε)−1
|VOPT|

)
· |VOPT|

≥
1
α√(

β(1 + ε)− β(1+ε)−1
k

) ·
∑
v∈VOPT

p(v)√
|VOPT|

=
1

α
√
β(1 + ε)− β(1+ε)−1

k

·OPT.

�
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input

An undirected graph G = (V,E)

A function p : V → R≥0
An integer k ∈ [1, n]

An (α, β) bi-criteria approximation algorithm A for the Budget PCST

A number ε > 0

returns

A connected induced subgraph H ∈ C≤k of G

begin

Define a function c(e) 7→ 1 for every e ∈ E
B ← 1

S ←
{

arg max
v∈V

p(v)

}
while true

if B ≥ k − 1 then

B ← k − 1

end if

TB = (VB , EB)← A(G, p, c, B)

if 1√
|VB |

∑
v∈VB

p(v) > 1√
|S|

∑
v∈S p(v) then

S ← VB
end if

if B ≥ k − 1 then

break

end if

B ← B · (1 + ε)

end while

return G[S]

end

Figure 2. Algorithm in Proposition 3.5

3.2. Reduction to the Quota PCST. Now we turn the attention to the Quota PCST. The-
orem 3.6 shows how good bi-criteria approximation algorithms for the Quota PCST yield bi-
criteria approximation algorithms for the k-Elevated Mean problem with good approximation
guarantees.

Theorem 3.6. For every ε > 0, an (α, β) bi-criteria approximation algorithm A for the Quota

PCST yields a
(
β(1 + ε)

√
α− α−1

k , α− α−1
k

)
bi-criteria approximation algorithm B for the k-

Elevated Mean problem, using O(log1+ε k) calls of A.

Proof. Suppose A is an (α, β) bi-criteria approximation algorithm for the Quota PCST. Let
(G = (V,E), p, k) be an instance of the k-Elevated Mean problem. We first describe the algorithm
B for the k-Elevated Mean problem.

Again, let c : E → R≥0 be the function that assigns unit cost to every edge.
The algorithm B uses a geometric search over the quota values. Let q = maxv∈V p(v). For

quota Q = q, q(1 + ε), ..., q(1 + ε)i, apply A on the Quota PCST instance (G, p, c,Q). Let
TQ = (VQ, EQ) be the subtree returned by A in the corresponding iteration. When Q > kq,
stop the geometric search, so the number of iterations is O(log1+ε k). Also, stop the geometric
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search immediately when the subtree TQ = (VQ, EQ) returned by A has size

|VQ| >
(
α− α− 1

k

)
· k.(3.9)

Note that this extra stopping condition of the geometric search guarantees that the connected
induced subgraph returned by B has size ≤

(
α− α−1

k

)
· k. Among all the subtrees {TQ}, return

the connected induced subgraph G[VQ] corresponding to the subtree that maximizes the scan
statistics ∑

v∈VQ
p(v)√

|VQ|
as the output of B.

Now we show that B achieves an approximation ratio of β(1+ε)
√
α− α−1

k . LetG[VOPT] ∈ C≤k
be the optimum connected induced subgraph of the instance (G, p, k) of the k-Elevated Mean

problem. Let T̂ = (VOPT, Ê) be a subtree of G that spans VOPT. Note that the following holds:

q = max
v∈V

p(v) ≤
∑

v∈VOPT

p(v) ≤ k ·max
v∈V

p(v) = kq.(3.10)

Moreover, the extra stopping condition (3.9) of B is never met during the iterations when Q ≤∑
v∈VOPT

p(v). Because T̂ = (VOPT, Ê) is a solution to the Quota PCST instance (G, p, c,Q) for

Q ≤
∑
v∈VOPT

p(v) and has value ∑
e∈Ê

c(e) = |Ê| = |VOPT| − 1,

the subtree TQ = (VQ, EQ) returned by the (α, β) bi-criteria approximation algorithm A on the
corresponding Quota PCST instance, by Definition 3.2, has value∑

e∈EQ

c(e) ≤ α ·
∑
e∈Ê

c(e) = α · (|VOPT| − 1) ,

so the size of TQ is bounded by

|VQ| = |EQ|+ 1

=

∑
e∈EQ

c(e)

+ 1

≤ α · (|VOPT| − 1) + 1

=

(
α− α− 1

|VOPT|

)
· |VOPT|

≤
(
α− α− 1

k

)
· k,

using that c is the unit cost function on edges. This shows that the stopping condition (3.9) is
not satisfied when Q ≤

∑
v∈VOPT

p(v).

From (3.10) and the observation that the stopping condition (3.9) is never met when Q ≤∑
v∈VOPTp(v)

, we know that there is an iteration Q = Q0 during the geometric search over the

quota values such that

1

1 + ε
·

 ∑
v∈VOPT

p(v)

 ≤ Q0 ≤
∑

v∈VOPT

p(v).(3.11)

Consider such iteration Q = Q0 of the algorithm B. Let TQ0 = (VQ0 , EQ0) be the subtree
returned by A in this iteration. Let T ′ = (V ′, E′) be the optimum subtree for the Quota PCST
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instance (G, p, c,Q0). Then, by Definition 3.2, the following holds:∑
e∈EQ0

c(e) ≤ α ·
∑
e∈E′

c(e),(3.12)

∑
v∈VQ0

p(v) ≥ 1

β
·Q0.(3.13)

Again, since c is the unit cost function, (3.12) translates to

|VQ0
| − 1 = |EQ0

| ≤ α · |E′| = α · (|V ′| − 1),(3.14)

|VQ0
| ≤

(
α− α− 1

|V ′|

)
· |V ′|.(3.15)

Recall that T̂ = (VOPT, Ê) is a subtree of G that spans VOPT. Note that T̂ is a solution to the
Quota PCST instance (G, p, c,Q0) that satisfies the quota constraint:∑

v∈VOPT

p(v) ≥ Q0.

Thus, we have ∑
e∈Ê

c(e) ≥
∑
e∈E′

c(e),(3.16)

as T ′ = (V ′, E′) is the optimum subtree for the Quota PCST instance (G, p, c,Q0). Since c is
the unit cost function, (3.16) is equivalent to

|VOPT| ≥ |V ′|.(3.17)

From (3.11), (3.13), (3.15), and (3.17), we conclude that

VAL ≥
∑
v∈VQ0

p(v)√
|VQ0
|

≥
1
β ·Q0√(

α− α−1
|V ′|

)
· |V ′|

≥
1
β ·

1
1+ε ·

(∑
v∈VOPT

p(v)
)

√(
α− α−1

|VOPT|

)
· |VOPT|

≥
1
β ·

1
1+ε√

α− α−1
k

·
∑
v∈VOPT

p(v)√
|VOPT|

=
1

β(1 + ε)
√
α− α−1

k

·OPT.

�

Remark 3.7. So far, Theorem 3.4, Proposition 3.5, and Theorem 3.6 only show bi-criteria ap-
proximation algorithms for the k-Elevated Mean problem. If instead we do not want bi-criteria
approximation algorithms, observe that Theorem 3.4 and Proposition 3.5 also produce approx-
imation algorithms for the k-Elevated Mean problem using approximation algorithms for the
Budget PCST.

In fact, the algorithms B in Theorem 3.4, Proposition 3.5, and Theorem 3.6 are bi-criteria
approximation algorithms because the returned subgraph could potentially come from a larger
class than C≤k. However, for the Elevated Mean problem whose objective is optimized over the
class C of all connected induced subgraphs, this concern is no longer an issue. Therefore, we
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input

An undirected graph G = (V,E)

A function p : V → R≥0
An integer k ∈ [1, n]

An (α, β) bi-criteria approximation algorithm A for the Quota PCST

A number ε > 0

returns

A connected induced subgraph H ∈ C≤k of G

begin

Define a function c(e) 7→ 1 for every e ∈ E
q ← max

v∈V
p(v)

Q← q

S ←
{

arg max
v∈V

p(v)

}
while Q ≤ kq

TQ = (VQ, EQ)← A(G, p, c,Q)

if |VQ| >
(
α− α−1

k

)
· k then

break

end if

if 1√
|VQ|

∑
v∈VQ

p(v) > 1√
|S|

∑
v∈S p(v) then

S ← VQ
end if

Q← Q · (1 + ε)

end while

return G[S]

end

Figure 3. Algorithm in Theorem 3.6

see that Theorem 3.4, Proposition 3.5, and Theorem 3.6 produce approximation algorithms B
for the Elevated Mean problem, even if the provided algorithms A are bi-criteria approximation
algorithms.

The observations in Remark 3.7 are summarized in Corollary 3.8 and Corollary 3.9.

Corollary 3.8. Let A be an α-approximation algorithm for the Budget PCST. Then, there is

• an α-approximation algorithm for the k-Elevated Mean problem, using k calls of A, given
by Theorem 3.4.

• for every ε > 0, an
(
α
√

(1 + ε)− ε
k

)
-approximation algorithm for the k-Elevated Mean

problem, using O(log1+ε k) calls of A, given by Proposition 3.5.

Corollary 3.9. Let A1 be an (α1, β1) bi-criteria approximation algorithm for the Budget PCST.
Let A2 be an (α2, β2) bi-criteria approximation algorithm for the Quota PCST. Then, there is

• an

(
α1

√
β1 − β1−1

n

)
-approximation algorithm for the Elevated Mean problem, using n

calls of A1, given by Theorem 3.4.

• for every ε > 0, an

(
α1

√
β1(1 + ε)− β1(1+ε)−1

n

)
-approximation algorithm for the Ele-

vated Mean problem, using O(log1+ε n) calls of A1, given by Proposition 3.5.
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• for every ε > 0, a
(
β2(1 + ε)

√
α2 − α2−1

n

)
-approximation algorithm for the Elevated

Mean problem, using O(log1+ε n) calls of A2, given by Theorem 3.6.

Remark 3.10. While obtaining an approximation algorithm for the Elevated Mean problem
using an approximation algorithm for the Budget PCST may seem more intuitive, to the best
of our knowledge, the current constant-factor approximation algorithms for the Budget PCST
[15, 17] are obtained using the approximation algorithms for the Quota PCST as subroutines,
and the approximation ratios of the resulting algorithms for the Budget PCST are worse than
the approximation ratios of the original algorithms for the Quota PCST. Therefore, we look at
algorithms for both the Budget PCST and the Quota PCST, and allow bi-criteria approximation
algorithms that may provide better approximation ratios for the Elevated Mean problem.

Finally, we present two constant-factor approximation algorithms for the Elevated Mean prob-
lem and the k-Elevated Mean problem respectively.

Levin [17] showed a (4 + ε)-approximation algorithm for the Budget PCST. Together with
Corollary 3.8, we get a (4 + ε)-approximation algorithm for the k-Elevated Mean problem

Johnson, Minkoff, and Phillips [15] noted that given an approximation algorithm for the
Quota PCST with approximation ratio ≤ 2, there is a (3 + ε)-approximation algorithm for the
Budget PCST. They also showed that any approximation algorithm for the k-MST using the
primal-dual schema of Goemans & Williamson [14] yield an approximation to the Quota PCST
with the same approximation ratio. Garg [13] obtained a 2-approximation to the k-MST, which
in turn gave a 2-approximation to the Quota PCST.

Therefore, using a (3 + ε)-approximation algorithm for the Budget PCST, by Corollary 3.8,
we have

Theorem 3.11. There is a (3 + ε)-approximation algorithm for the k-Elevated Mean problem
for every ε > 0.

Using a 2-approximation algorithm for the Quota PCST, by Corollary 3.9, we have

Theorem 3.12. There is a (1 + ε)
√

2− 1
n -approximation algorithm for the Elevated Mean

problem for every ε > 0. In particular, by choosing ε = 1
4n , we get a

√
2-approximation algorithm

for the Elevated Mean problem.

Alternatively, we can also obtain Theorem 3.12 using a (1 + ε, 2) bi-criteria approximation
algorithm for the Budget PCST, which can be easily obtained by applying a 2-approximation
algorithm for the Quota PCST O(log1+ε n) times [17]. However, with this black-box reduction

from Budget PCST to Quota PCST, the resulting
√

2-approximation algorithm for the Elevated
Mean problem has worse running time than the one that uses a 2-approximation to the Quota
PCST.

4. Anomaly Detection

In this section, we formalize the anomaly detection problem as a hypothesis testing problem,
and present the decision rule TEM based on maximizing the Elevated Mean scan statistics (2.1).

4.1. Anomaly Detection as Hypothesis Testing. Let G = (V,E) be an undirected graph.
For each vertex v ∈ V , there is an associated observation xv, which is a random variable. We
are interested in distinguishing the two hypotheses below:

• Under the null hypothesis H0, the observations xv follow i.i.d. Gaussian N (0, 1).
• Under the alternative hypothesis H1, there is a connected set of vertices S ⊂ V that is

the anomalous cluster, and the observations xv independently follow

xv ∼ µ · 1S(v) +N (0, 1),

for some µ > 0.

Beside the Gaussian model (network intrusion) above, we also consider the variant of Poisson
model (disease outbreak) in the anomaly detection problem:
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• Under the null hypothesis H0, the observations xv follow i.i.d. Poisson Pois(1).
• Under the alternative hypothesis H1, there is a connected set of vertices S ⊂ V that is

the anomalous cluster, and the observations xv independently follow

xv ∼ Pois(1 + µ · 1S(v)),

for some µ > 0.

S

Figure 4. Left: the ground truth of the anomalous cluster S in the network.
Right: the observations of the vertices of the network.

We formalize the anomaly detection problem as follows. The anomaly detection problem
is a promise problem, with input being a tuple of an undirected graph G = (V,E), a set of
observations xv ∈ R for the vertices, a parmeter k ∈ N and two hidden parameters s ∈ N
and µ ∈ R≥0 that are not visible to the decision rule. It is guaranteed that the observations
xv follow either the null hypothesis H0 or the alternative hypothesis H1. If the observations
xv follow H1, it is guaranteed that the anomalous cluster S ⊂ V forms a connected induced
subgraph G[S] ∈ C≤k, has size at least |S| ≥ s, and has parameter µ as its elevated mean in H1.

The goal of the anomaly detection problem is to design a rule πG : RV × N → {0, 1}, such
that given the parameter k, πG maps the observations from H0 to 0 with high probability, and
the observations from H1 to 1 with high probability. Let HS denote the alternative hypothesis
H1 in which the connected set S ⊂ V is the anomalous cluster. We measure the risk [3] using

R(πG) = PH0 (πG({xv}, k) = 1) + max
S⊂V :|S|≥s,
G[S]∈C≤k

PHS
(πG({xv}, k) = 0) ,

which combines both Type I and Type II errors.

Definition 4.1. A sequence of instances of the anomaly detection problem (Gn, kn, sn, µn) is
δ-separable, if there exists a rule πGn

for every instance in this sequence, such that for all
sufficiently large n,

R(πGn
) ≤ δ.

Definition 4.2. A sequence of instances of the anomaly detection problem (Gn, kn, sn, µn) is
asymptotically separable, if there exists a rule πGn for every instance in this sequence, such that

R(πGn) = on(1).

In what follows, we are interested in the cases of the anomaly detection problem where
kn, sn = ω(1).
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4.2. Decision Rule. Now, we describe the decision rule following the generalized likelihood
ratio test schema [3] based on the Elevated Mean scan statistics.

Given the input graph G = (V,E), the set of observations xv, and the parameter k, we
compute a threshold θ. Then, we create a vertex-valued function p : V → R≥0 by truncating
the observations xv into nonnegative values

p(v) =

{
xv if xv ≥ 0

0 if xv < 0
,

and feed the resulting instance (G, p, k) of the k-Elevated Mean problem to the constant-factor
approximation algorithm obtained in Section 3. Let VAL be the value of the solution returned
by the approximation algorithm. We accept the null hypothesis H0 if VAL < θ, and accept the
alternative hypothesis H1 otherwise. Note that this is a polynomial time decision rule if the
threshold value θ can be efficiently computed.

Moreover, this decision rule based on the Elevated Mean scan statistics∑
v∈V (H) p(v)√
|V (H)|

can be shown to correspond to the generalized likelihood ratio test [3] for the anomaly detection
problem in the Gaussian model under some restrictions [3].

We will refer to this decision rule as Testing via Elevated Mean (TEM ).

5. Analysis of Separability

In this section, we will explore the detection power of the decision rule TEM . The analysis
involves two steps: to lower bound the expected optimum value of the Elevated Mean scan
statistics for the alternative hypothesis H1, and to upper bound the expected optimum value of
the Elevated Mean scan statistics for the null hypothesis H0. When there is a significant gap
between the two expectations, we can show separability results.

5.1. Lower Bound for the Alternative Hypothesis. If the observations xv follow the al-
ternative hypothesis H1, we can use the ground truth of the anomalous cluster S to construct a
lower bound for the expectation of the optimum scan statistics.

EH1

[∑
v∈S p(v)√
|S|

]
≥ EH1

[∑
v∈S xv√
|S|

]

=

{√
|S| · µ (Gaussian model)√
|S| · (1 + µ) (Poisson model)

.

In fact, by central limit theorem, we know that as |S| → ∞,∑
v∈S xv√
|S|

d−→

N
(√
|S| · µ, 1

)
(Gaussian model)

N
(√
|S| · (1 + µ), 1 + µ

)
(Poisson model)

,

and by concentration bound, with high probability we have∑
v∈S p(v)√
|S|

≥
√
|S| · µ(1− o(1))

≥
√
s · µ(1− o(1)).

Since the decision rule TEM uses the constant factor approximation for the k-Elevated Mean
problem in Section 3, with high probability the value of the solution returned by the algorithm
is lower bounded by

VAL ≥ 1

α
·
√
s · µ(1− o(1)),

where α is the approximation ratio.
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5.2. Upper Bound for the Null Hypothesis. Now, we show an upper bound for the expec-
tation of optimum scan statistics if the observations xv follow the null hypothesis H0.

Let G be an undirected graph. Let Ck denote

Ck = {connected induced subgraphs of G of size = k}.

The following is a well-known bound [7] on the number of connected induced subgraphs of size
k for graphs of maximum degree ≤ d:

|Ck| ≤ n · (e(d− 1))
k−1

(5.1)

In what follows, we will use d to denote the maximum degree of the graph G. We will also
assume the nontrivial cases when d ≥ 3, as the analysis for smaller d is easier to go through.

Define the optimum Elevated Mean scan statistics as

OPT = max
H∈C≤k

∑
v∈V (H) p(v)√
|V (H)|

.

We want to upper bound the expectation of the optimum Elevated Mean scan statistics OPT
under the null hypothesis H0.

5.2.1. Gaussian model. First, we prove a bound for the Gaussian model.

Theorem 5.1. In the Gaussian model, under the null hypothesis H0, we have

EH0
[OPT] ≤

√
2 log n+O(k log d).

Proof. Consider a connected induced subgraph H ∈ C≤k. Note that the moment generating
function of the scan statistics 1√

|V (H)|
·
∑
v∈V (H) p(v) is

MH(t) = EH0

exp

t · 1√
|V (H)|

·
∑

v∈V (H)

p(v)

(5.2)

= EH0

[
exp

(
t√
|V (H)|

· p(v)

)]|V (H)|

(5.3)

= Mp

(
t√
|V (H)|

)|V (H)|

,(5.4)

where Mp(t) is the moment generating function of p(v). Let Mx(t) be the moment generating
function of the observations xv. Then, we can bound Mp(t) using Mx(t):

Mp(t) = EH0
[exp (t · p(v))](5.5)

≤ EH0
[exp (t · xv)] + PH0

(xv < 0) · exp (t · 0)(5.6)

= Mx(t) +
1

2
(5.7)

≤ 3

2
·Mx(t)(5.8)

=
3

2
· exp

(
t2

2

)
,(5.9)

as p(v) =

{
xv if xv ≥ 0

0 if xv < 0
, and the probability that xv < 0 is 1

2 for i.i.d. xv ∼ N (0, 1).
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Therefore, plugging (5.9) into (5.4), we get

MH(t) = Mp

(
t√
|V (H)|

)|V (H)|

≤
[

3

2
· exp

(
t2

2|V (H)|

)]|V (H)|

=

(
3

2

)|V (H)|

· exp

(
t2

2

)
.

Next, we use the folklore technique for bounding the expected maximum of a set of random
variables. For any t > 0, we have

exp (t · EH0
[OPT]) ≤ EH0

[exp (t ·OPT)]

= EH0

 max
H∈C≤k

exp

t · 1√
|V (H)|

·
∑

v∈V (H)

p(v)


≤ EH0

 ∑
H∈C≤k

exp

t · 1√
|V (H)|

·
∑

v∈V (H)

p(v)


≤

∑
H∈C≤k

(
3

2

)|V (H)|

· exp

(
t2

2

)

≤ |C≤k| ·
(

3

2

)k
· exp

(
t2

2

)
,

where the first inequality is Jensen’s inequality. Rewriting the inequality above and plugging in
the bound (5.1), we get

EH0
[OPT] ≤

log |C≤k|+ k log 3
2 + t2

2

t

=
log
(∑k

i=1 |Ci|
)

+ k log 3
2

t
+
t

2

≤
log
(∑k

i=1 n · (e(d− 1))i−1
)

+ k log 3
2

t
+
t

2

≤ log n+O(k log d)

t
+
t

2
.

Setting t =
√

2 ·
√

log n+O(k log d), we get

EH0
[OPT] ≤

√
2 log n+O(k log d).

�

5.2.2. Poisson model. Then, we prove a bound for the Poisson model. For the sake of the
analysis, we define the following quantities:

Yr = max
H∈Cr

∑
v∈V (H)

p(v),(5.10)

ki =
k

(1 + ε)i
,(5.11)

Z = max
i≥0

1√
ki
Yki ,(5.12)

where ε > 0 is a parameter that we will choose later. We would like to bound the expected
optimum scan statistics OPT for the null hypothesis H0. We do so by first upper bounding the
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expectation of Yki , which in turn upper bounds the expectation of Z, and then upper bounds
the expectation of OPT.

First, we bound the expected Yr.

Lemma 5.2. In the Poisson model, under the null hypothesis H0, we have

EH0
[Yr] ≤

log n+O(r log d)

log log d
.

Proof. In the Poisson model, we have

p(v) = xv ∼ Pois(1),

so the moment generating function of p(v) is M(t) = exp (et − 1). Again, using the same
technique, for any t > 0, we have

exp (t · EH0 [Yr]) ≤ EH0 [exp (t · Yr)]

= EH0

max
H∈Cr

exp

t · ∑
v∈V (H)

p(v)


≤ EH0

 ∑
H∈Cr

exp

t · ∑
v∈V (H)

p(v)


= |Cr| ·

(
exp (et − 1)

)r
.

Rewriting the inequality above and plugging in the bound (5.1), we get

EH0
[Yr] ≤

log |Cr|+ r(et − 1)

t

≤ log n+ (r − 1) log(e(d− 1)) + r(et − 1)

t

≤ log n+O(r log d) + r(et − 1)

t
.

Setting t = log log d, we get

EH0 [Yr] ≤
log n+O(r log d) + r(log d− 1)

log log d

≤ log n+O(r log d)

log log d
.

�

Next, we bound the expected value of Z using the bound on the expected values of Yki in
Lemma 5.2.

Lemma 5.3. In the Poisson model, under the null hypothesis H0, the following is true for ε = 3
in the definition (5.11)

EH0
[Z] ≤

log n+O
(√

k · log d
)

log log d
.

Proof. First, we bound the maximum using the sum:

EH0
[Z] = EH0

[
max
i≥0

1√
ki
Yki

]

≤ EH0

∑
i≥0

1√
ki
Yki


=
∑
i≥0

1√
ki
· EH0

[Yki ] .



ANOMALY DETECTION ON CONNECTED SUBGRAPHS VIA ELEVATED MEAN 19

By Lemma 5.2, we have

EH0 [Z] ≤
∑
i≥0

1√
ki
·
(

log n+O(r log d)

log log d

)

≤

∑
i≥0

(
logn√
ki

+O
(√
ki · log d

))
log log d

=

(∑
i≥0
√

(1 + ε)i · logn√
k

)
+

(∑
i≥0

1√
(1+ε)i

·O
(√

k · log d
))

log log d

≤ 1

log log d
·

[ √
k − 1√

1 + ε− 1
· log n√

k
+

1− 1√
k

1− 1√
1+ε

·O
(√

k · log d
)]

Setting ε = 3, we get

EH0
[Z] ≤

log n+O
(√

k · log d
)

log log d
.

�

Finally, observe the inequality between the expectation of OPT and the expectation of Z in
the following lemma:

Lemma 5.4. Under the null hypothesis H0,

EH0
[OPT] ≤

√
1 + ε · EH0

[Z].

Proof. We will actually show

OPT ≤
√

1 + ε · Z.

Let G[VOPT] ∈ C≤k be the optimum induced subgraph that maximizes the Elevated Mean
scan statistics. By the definition (5.11) of ki, we know there exists an index j such that

kj+1 =
k

(1 + ε)j+1
< |VOPT| ≤

k

(1 + ε)j
= kj ,(5.13)

so G[VOPT] ∈ C≤kj . Therefore, we can lower bound Ykj using the induced subgraph G[VOPT]:

Ykj = max
H∈Ckj

∑
v∈V (H)

p(v)(5.14)

= max
H∈C≤kj

∑
v∈V (H)

p(v)(5.15)

≥
∑

v∈VOPT

p(v).(5.16)

Recall the definition of Z in (5.12):

Z = max
i≥0

1√
ki
Yki .



20 XIFAN YU

Combining the inequalities (5.13) and (5.16), we get

OPT =

∑
v∈VOPT

p(v)√
|VOPT|

≤
Ykj√
kj+1

=
√

1 + ε ·
Ykj√
kj

≤
√

1 + ε · Z.

�

Now, we are ready to state the upper bound for the expected optimum Elevated Mean scan
statistics OPT under H0 for the Poisson model. Combining Lemma 5.3 and Lemma 5.4, we get
the following theorem:

Theorem 5.5. In the Poisson model, under the null hypothesis H0, we have

EH0
[OPT] ≤

2 log n+O
(√

k · log d
)

log log d
.

Remark 5.6. Note that this analysis of the upper bound for the null hypothesis is independent
of the decision rule. The only role of the decision rule TEM in this analysis is to make sure that
under the alternative hypothesis H1, the value of the solution returned by the algorithm is off
by at most a constant from the lower bound for the alternative hypothesis.

5.3. Separability Results. Now, we show some separability results for the anomaly detection
problem following the previous analysis of the lower bound for the alternative hypothesis and
the upper bound for the null hypothesis.

In what follows, we will use dn to denote the maximum degree of the graph Gn.

Theorem 5.7. There exists a constant c such that the following is true.
In the Gaussian model, a sequence of instances (Gn, kn, sn, µn) of the anomaly detection

problem is asymptotically separable if

µn ≥ c ·
√

log n+ kn log dn√
sn

,

and moreover, TEM is a polynomial time decision rule that asymptotically separates H0 and H1

if the above inequality holds.

Proof. By Theorem 5.1, the expected optimum scan statistics for the null hypothesis H0 is upper
bounded by

EH0
[OPTn] ≤

√
2 log n+O(kn log dn).

Here we will show that the same asymptotic bound holds for OPTn with high probability. Note
that for each subgraph H ∈ C≤kn , the associated scan statistics is upper bounded by∑

v∈V (H) p(v)√
V (H)

≤
∑
v∈V (H) |xv|√
V (H)

= max
(ξv)∈{±1}V (H)

∑
v∈V (H) ξv · xv√

V (H)
,

as p(v) =

{
xv if xv ≥ 0

0 if xv < 0
. Since xv follow i.i.d. N (0, 1) under H0, each term

∑
v∈V (H) ξv·xv√

V (H)
in

the maximum above also follows N (0, 1), and there are at most 2kn terms. As a result, the
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optimum scan statistics OPTn|H0 under the null hypothesis is upper bounded by

OPTn|H0 = max
H∈C≤kn

∑
v∈V (H) p(v)√
|V (H)|

(5.17)

≤ max
H∈C≤kn

(
max

(ξv)∈{±1}V (H)

∑
v∈V (H) ξv · xv√

V (H)

)
,(5.18)

which is the maximum of a collection of at most 2kn · |C≤kn | random variables following N (0, 1).
Let Zn denote this maximum, i.e.,

Zn = max
H∈C≤kn

(
max

(ξv)∈{±1}V (H)

∑
v∈V (H) ξv · xv√

V (H)

)
.

Using the same proof as in Theorem 5.1, we have

EH0
[Zn] ≤

√
2 log n+O(kn log dn).(5.19)

Since Zn is the maximum of a collection of N (0, 1) Gaussian random variables, the following
concentration inequality [24] holds

PH0
(Zn − E [Zn] ≥ t) ≤ c1 · e−c2t,(5.20)

where c1, c2 > 0 are constants. Therefore, from (5.18), (5.19), and (5.20), with high probability
we have

OPTn|H0
≤ Zn|H0

(5.21)

≤
√

2 log n+O(kn log dn) · (1 + o(1))(5.22)

≤ O
(√

log n+ kn log dn

)
.(5.23)

On the other hand, recall that the optimum scan statistics for the alternative hypothesis H1

is lower bounded by

OPTn|H1 ≥
∑
v∈S p(v)√
|S|

≥
√
sn · µn(1− o(1))(5.24)

with high probability, where S ⊂ V is the anomalous cluster.
Combining the inequalities (5.23) and (5.24), we conclude that by choosing an appropriate

constant c, if

µn ≥ c ·
√

log n+ kn log dn√
sn

holds, then for all sufficiently large n, with high probability we have

OPTn|H0
<

0.99·c
α
·
√

log n+kn log dn ≤ 0.99·c·
√

log n+kn log dn ≤ OPTn|H1
,(5.25)

where α is the approximation ratio of the algorithm we used for the Elevated Mean problem.
Clearly, if the inequality (5.25) above holds with high probability, the decison rule TEM

asymptotically separates H0 and H1 by setting the threshold value to

θn =
0.99·c
α
·
√

log n+ kn log dn.

�

Theorem 5.8. In the Poisson model, a sequence of instances (Gn, kn, sn, µn) of the anomaly
detection problem is asymptotically separable if

µn = ω

(
log n+

√
kn · log dn

log log dn ·
√
sn

)
,
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and moreover, TEM is a polynomial time decision rule that asymptotically separates H0 and H1

provided with a function g : N→ R such that g(n) = ωn(1) and

µn = Ω

(
g(n) · log n+

√
kn · log dn

log log dn ·
√
sn

)
.

Proof. The proof idea is similar to the proof for the Gaussian model in Theorem 5.7, but without
the concentration inequality for the maximum, we apply Markov’s inequality. �

As a special case, we have the following corollary if the graphs Gn have bounded degree and
if the search space C≤kn is not too far from the size of the anomalous cluster sn.

Corollary 5.9. Suppose sn = Ω(kn) and dn is bounded above by a constant. Then, there exists
a constant c′ such that the following is true.

A sequence of instances (Gn, kn, sn, µn) of the anomaly detection problem is asymptotically
separable

• in the Gaussian model if

µn ≥ c′ ·
(√

log n√
kn

+ 1

)
.

• in the Poisson model if

µn = ω

(
log n√
kn

+ 1

)
.

6. Discussion

We have shown separability bounds for the anomaly detection problem in the previous section
using upper bound for the null hypothesis and lower bound for the alternative hypothesis. In
this section, we show that the upper bound for the expected Elevated Mean scan statistics in
the null hypothesis H0 we established in the previous section is asymptotically tight for the
Gaussian model.

First, we show a simple degree-independent lower bound for the null hypothesis in the Gauss-
ian model.

Lemma 6.1. In the Gaussian model, under the null hypothesis H0, we have

EH0
[OPT] = Ω

(√
log n

)
.

Proof. Note that we have

OPT ≥ max
v∈V

p(v) ≥ max
v∈V

xv,

and xv are i.i.d. N (0, 1) random variables under the null hypothesis H1. As the expected
maxv∈V xv is lower bounded [16] by Ω

(√
log n

)
, we conclude that

EH0
[OPT] = Ω

(√
log n

)
.

�

Next, we show another lower bound for the null hypothesis in the Gaussian model based on
the maximum degree. We will use a lower bound on the maximum size of set systems with
restricted intersections [5] and the stability of the maximum of weakly dependent Gaussian
random variables [6].

Lemma 6.2. Let (G = (V,E), k, s, µ) be an instance of the anomaly detection problem in the
Gaussian model. Let v ∈ V be a vertex of degree d. Suppose d ≥ 2(k − 1)2. Then, under the
null hypothesis H0, we have

EH0
[OPT] = Ω

(√
k log d

)
.
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Proof. Consider the neighborhood N(v) of the vertex v. Let h be a parameter that we will later
determine. We would like to find a (k− 1)-uniform family F in the neighborhood N(v) of large
size, such that the intersection of any two distinct sets E,F ∈ F is

|E ∩ F | ≤ h− 1,

and that

h

k
= o (1) .(6.1)

It is a known result [5] that for a given h, if d ≥ 2(k − 1)2 and k ≥ h, then there exists
a (k − 1)-uniform family F on a ground set of d elements, such that for any two distinct sets
E,F ∈ F ,

|E ∩ F | ≤ h− 1,

and that the size of F is

|F| >
(

d

2(k − 1)

)h
≥
(
d

2

)h/2
.(6.2)

In our case, there exists a (k − 1)-uniform family F in the neighborhood N(v) of size >
(
d
2

)h/2
such that the pairwise intersection of sets in F is ≤ h− 1.

Now fix a monotone function g : N→ R such that g(n) = ω(1). Then, the inequality (6.1) is
satisfied if we set h = k

g(n) .

Consider the family Fv = {E ∪ {v} : E ∈ F}. Clearly, Fv is k-uniform, the sets in Fv are
connected in the graph G, and the pairwise intersection of sets in Fv is ≤ h. Therefore, we have
established the existence of a k-uniform family Fv in N(v) ∪ {v} containing sets of connected
vertices, such that for any two distinct sets A,B ∈ Fv,

|A ∩B| ≤ h,

and the size of Fv is

|Fv| >
(
d

2

)h/2
,

where h = k
g(n) .

Now consider a collection G of connected induced subgraphs of G given by the vertex sets in
Fv, i.e., G = {G[A] : A ∈ Fv}. The Elevated Mean scan statistics associated with each subgraph
H = G[A] ∈ G

pH =

∑
v∈A p(v)√
|A|

is lower bounded by the random variable

xH =

∑
v∈A xv√
|A|

,

and the variables xH each follow the normal distribution N (0, 1).
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Note that the covariance of xH1 and xH2 for two distinct subgraphsH1 = G[A], H2 = G[B] ∈ G
is

Cov(xH1 , xH2) = Cov

(
1√
k

∑
u∈A

xu,
1√
k

∑
v∈B

xv

)

=
1

k
·
∑
u∈A,
v∈B

Cov(xu, xv)

=
1

k
·
∑

v∈A∩B
V ar(xv)

=
|A ∩B|

k

≤ h

k
≤ 1

g(n)
= o(1).

As a consequence, by the stability result of the maximum of weakly dependent Gaussian random
variables [6], we have

EH0

[
max
H∈G

xH

]
= Ω

(√
log |G|

)
,

where |G| = |Fv| >
(
d
2

)h/2
. Therefore, we have the following lower bound on the expected OPT

under the null hypothesis

EH0
[OPT] = EH0

[
max
H∈C≤k

∑
v∈V (H) p(v)√
|V (H)|

]

≥ EH0

[
max
H∈G

∑
v∈V (H) p(v)√
|V (H)|

]

≥ EH0

[
max
H∈G

∑
v∈V (H) xv√
|V (H)|

]

= EH0

[
max
H∈G

xH

]
= Ω

(√
log |G|

)
= Ω

(√
h

2
· log

(
d

2

))

= Ω

(√
k log d

g(n)

)
.

Since g : N→ R is an arbitrary monotone function such that g(n) = ω(1), we conclude that

EH0 [OPT] = Ω
(√

k log d
)
.

�

Combining Lemma 6.1 and Lemma 6.2, we get the following lower bound that matches the
upper bound in Theorem 5.1.

Theorem 6.3. Let (G = (V,E), k, s, µ) be an instance of the anomaly detection problem in the
Gaussian model. Let v ∈ V be a vertex of degree d. Suppose d ≥ 2(k − 1)2. Then, under the
null hypothesis H0, we have

EH0
[OPT] = Ω

(√
log n+ k log d

)
.
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7. Conclusion

In summary, we described a black-box reduction schema from the Elevated Mean problem
to the Quota Prize-Collecting Tree problem and the Budget Prize-Collecting Tree problem,
and showed a

√
2-approximation algorithm for the Elevated Mean problem, and a (3 + ε)-

approximation algorithm for the k-Elevated Mean problem. We also provided separability
bounds based on the maximum degree of the underlying graph for the anomaly detection prob-
lem, and used the constant-factor approximation algorithms shown earlier to show a polynomial
time decision rule TEM that achieves the separability bounds we proved.

Table 1 below shows a comparison between our separability results and some earlier work for
the Gaussian model of the anomaly detection problem.

Work Separability Bound
Class of Potential

Anomalous Clusters
Assumptions Computation

This µn ≥ c ·
√
logn+kn log dn√

sn

connected induced
subgraphs of size ≤ kn

∆(Gn) = dn
polynomial

time solvable

[19] µn = ω
(
log kn

√
log n

) connected induced sub-

graphs of 2D grid of
size ≤ kn

kn = sn
solving convex

objective subject
to LMI constraints

[19] µn = ω
(

log kn
φn·kn

) connected induced sub-

graphs of 2D grid con-
taining a fixed vertex a,

of size ≤ kn, and of

internal conductance
≥ φn

kn = sn
solving convex

objective subject
to LMI constraints

[3] µn ≥
√

(2+o(1)) logn√
kn

connected induced sub-

graphs of d-dimensional
grid of size ≤ kn

kn = sn
sn = o(logn)
d = O(1)

no efficiency

guarantee

Table 1. Comparison Between the Separability Results

In particular, our separability bound for the Gaussian model matches that of [3] up to constant
factor if the underlying graph has bounded degree, and generalizes the results to all graphs. Our
decision rule is also the first computationally tractable algorithm that achieves such separability
bound.

We conclude the paper by pointing to some future directions.

• Simpler and faster approximation algorithms for the Elevated Mean problem are needed
for more practical applications of the decision rule TEM .

• Better analysis for the Poisson model of the anomaly detection problem is needed in
order to get tighter separability results.

• Non-asymptotic bounds and precise constants in the bounds are worth examining.
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