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1. Problem

The anomaly detection problem is concerned with finding a connected subgraph of the
input graph-structured data such that average value of data over this subgraph is significantly
higher than the average value of the rest of the input. This problem has applications to various
real-world problems such as disease outbreak detection and detection of malicious intrusions
in a network.

The problem is defined in the following way: The input is a connected undirected graph
G = (V,E) and a value function w : V → R≥0. The objective is

max
H⊂G:

H connected

h(H) =
1√
|V (H)|

·
∑

v∈V (H)

w(v)

A naive approximation algorithm with 4
√
n approximation ratio is to return the maximum

objective of the singletons and of the entire graph G:

max{max
v∈V

h({v}), h(G)}

We hope to understand this problem better and attempt to obtain better approximation
guarantee. Currently we derived a linear programming relaxation that is efficiently solvable,
but no non-trivial integrality gap or rounding algorithm has been found. We also attempted
to come up with an SDP relaxation.

2. Linear Programming Relaxation

Since the value functon w : V → R≥0 is non-negative, we may as well consider the squared
objective, so that the squared denominator is rid of the square root:

max
H⊂G:

H connected

h2(H) =
1

|V (H)|
·

∑
(u,v)∈

V (H)×V (H)

w(u)w(v)

A natural integer program for the objective above would be to associate xv ∈ {0, 1} for each
vertex of G:

1∑
v∈V xv

·
∑

(u,v)∈
V×V

w(u)w(v) · xu · xv,

and think of xv = 1 if and only if v ∈ H. Now we additional constraints to make sure the
subgraph H of the integer program is connected. We introduce variables yu,v ∈ {0, 1} for

each unordered pair of vertices (u, v) ∈
(
V
2

)
, and think of yu,v = 1 if and only if xu = 1 and

xv = 1. We now use additional cut constraints as follows to make sure the solution of the
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integer program is a connected subgraph:

max
x,y

1∑
v∈V xv

·

 ∑
(u,v)∈(V2)

wu,v · yu,v +
∑
v∈V

wv,v · xv


s.t. yu,v ≤ xu, ∀(u, v) ∈

(
V

2

)
,

yu,v ≤ xv, ∀(u, v) ∈
(
V

2

)
,∑

(a,b)∈δ(S)

ya,b ≥ xv, ∀S ⊂ V : r ∈ S, v ∈ S̄,

xv, yu,v ∈ {0, 1},

where coefficients wu,v = 2w(u)w(v) and wv,v = w(v)2, and r ∈ V is some designated root
vertex. It is clear that the cut constraints ensure that a vertex v is connected to r in the
solution of the integer program whenever xv = 1.

Finally, we scale the variables x, y and get a linear program. We scale the variables x, y so
that

∑
v∈v xv = 1, to get rid of the denominator in the objective of the program above:

(P ) : max
x,y

 ∑
(u,v)∈(V2)

wu,v · yu,v +
∑
v∈V

wv,v · xv


s.t.

∑
v∈V

xv ≤ 1,

yu,v ≤ xu, ∀(u, v) ∈
(
V

2

)
,

yu,v ≤ xv, ∀(u, v) ∈
(
V

2

)
,∑

(a,b)∈δ(S)

ya,b ≥ xv, ∀S ⊂ V : r ∈ S, v ∈ S̄,

xv, yu,v ≥ 0.

Although (P ) has exponentially many cut constraints, it has a polynomial time separation
oracle, and thus it is efficiently solvable. A violated cut constraint can be found by running
n− 1 maximum flow algorithms from the root vertex r to a sink vertex v ∈ V \ {r}, with the
edge capacity of an edge (a, b) given by ya,b. If the maximum flow from r to v is less than
xv, then we discovered a cut that separates r and v with cut value less than xv, which is a
violated cut constraint.

The dual to the linear program (P ) is

(D) : min
α,f,g

α

s.t.
∑
v∈V

fu,v ≤ α+
∑
S:u∈S̄
r∈S

gS,u, ∀u ∈ V,

fu,v + fv,u ≥ wu,v +
∑

S:(u,v)∈δ(S),
u∈S̄,r∈S

gS,u +
∑

S:(u,v)∈δ(S),
v∈S̄,r∈S

gS,v, ∀(u, v) ∈ E,

fu,v + fv,u ≥ wu,v, ∀(u, v) 6∈ E,
fv,v ≥ wv,v, ∀v ∈ V,

α, fu,v, gS,u ≥ 0.
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∑

S:u∈S̄
r∈S
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∑

S:(u,v)∈δ(S),
v∈S̄,r∈S

gS,v

t

V

(
V
2

)
∪ V

Figure 1. Parametric flow corresponding to (D)

Note that without the dual variables gS,v corresponding to the cut constraints in the primal,
the dual program (D) can be efficiently solved using parametric flow algorithm described in [2].
Currently, I am trying to understand the dual variables gS,v and how they can be updated using
iterative methods to solve the dual efficiently with variants of the parametric flow algorithm.
A network flow picture of the dual program (D) is shown in Figure 1.

3. Semidefinite Programming Relaxation

We modified the linear program (P ) a bit to get a semidefinite programming relaxation.
We use the following vector program, which is equivalent to a semidefinite program.

(SDP ) : for parameter s∗, c∗, find feasible x

s.t. ||xr||22 = 1,∑
v∈V
||xv||22 = s∗,

s∗c∗ ≤
∑
v∈V

wv,v||xv||22 +
∑

(u,v)∈(V2)

wu,v〈xu, xv〉,

〈xr, xv〉 = ||xv||22, ∀v ∈ V,
||xu − xv||22 ≤ ||xu − xw||22 + ||xv − xw||22, ∀u, v, w ∈ V,∑

(a,b)∈δ(S)

〈xa, xb〉 ≥ ||xv||22, ∀S ⊂ V : r ∈ S, v ∈ S̄.

We want xv = (1, 0, 0, ..., 0) if v ∈ H, and xv = (0, 0, 0, ..., 0) otherwise. The parameter s∗

indicates the size of the subgraph H, and the parameter c∗ corresponds to the objective value.
Currently I am studying the ARV algorithm [1] for sparsest cut and trying to get some idea.

References

[1] Arora, Sanjeev, Satish Rao, and Umesh Vazirani. ”Expander flows, geometric embeddings and graph par-
titioning.” Journal of the ACM (JACM) 56, no. 2 (2009): 1-37.

[2] Gallo, Giorgio, Michael D. Grigoriadis, and Robert E. Tarjan. ”A fast parametric maximum flow algorithm
and applications.” SIAM Journal on Computing 18, no. 1 (1989): 30-55.


