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Abstract. In this paper, we present a brief survey of the Neggers-Stanley

conjecture. We introduce the (P, ω)-partition theory developed by Stanley

[15], and motivate the formulation of the Neggers-Stanley conjecture [6, p. 21].
Although the Neggers-Stanley conjecture is disproved in its general form [2]

[16], there are interesting open questions remaining for special cases. We collect

some results related to the Neggers-Stanley conjecture, and list a number of
open questions.
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1. Introduction

The order polynomial of a finite labelled poset is a polynomial that contains rich
information of the Jordan-Hölder set of the poset, and appears naturally in the
enumeration of many combinatorial structures. One conjecture regarding the order
polynomial that received a lot of attention was the Neggers-Stanley conjecture.

The Neggers-Stanley conjecture, or the Poset conjecture, asserts that two poly-
nomials related to the order polynomial, the E-polynomial and W -polynomial, have
only real roots for any finite labelled poset. The Neggers-Stanley conjecture has
been verified for several classes of labelled posets, and a number of partial results
have been proved. Although counterexamples to the Neggers-Stanley conjecture
and Neggers original conjecture have been found, there are still interesting open
questions regarding the E-polynomials and W -polynomials of special classes of la-
belled posets.
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In Sections 2 and 3, we motivate the theory of (P, ω)-partitions, as well as the
Neggers-Stanley conjecture. To remind ourselves that the general statement is
false, we present two simple counterexamples to the Neggers-Stanley conjecture in
Section 4, taken from [16]. In Section 5, we discuss the effects of different operations
on labelled posets on the order polynomials, E-polynomials, and W -polynomials,
largely following [17], and moreover show that the effects of the direct product
and the ordinal product on W -polynomials cannot be described by functions of
polynomials. In Section 6, we explore the interlacing properties of E-polynomials
of labelled posets discussed in [4]. We shift our attention in Section 7, as we
survey a recent result by Brändén [5] on the unimodality of W -polynomials of sign-
graded posets. Finally, we list a number of open questions on the Neggers-Stanley
conjecture in Section 8.

For some results on the Neggers-Stanley conjecture and related problems not
covered in this survey, we refer the reader to [6][8][11][12][13]. See [3] for a survey of
techniques that can be used to prove real-rootedness, log-concavity, or unimodality.

2. Definitions

We start by giving relevant definitions to prepare further discussions.

Definition 2.1. A partially ordered set (poset) P is a set, together with a binary
relation ≤ that satisfies

(1) For all t ∈ P , t ≤ t (reflexivity).
(2) If s ≤ t and t ≤ s, then s = t (antisymmetry).
(3) If s ≤ t and t ≤ u, then s ≤ u (transitivity).

In this work, we will work with finite posets.
We will use s < t to denote the relation s ≤ t and s 6= t. We say s, t ∈ P are

comparable if either s ≤ t or t ≤ s, and we say s, t ∈ P are incomparable otherwise,
denoted s ‖ t. When there are multiple posets in the context, we may use subscripts
to differentiate binary relations of different posets.

For s, t ∈ P , we say s covers t, denoted t ≺ s, if t < s and there does not exist
r ∈ P such that t < r < s. The Hasse diagram of a poset P is a diagram consisting
of all the covering relations of the elements of P .

Definition 2.2. A poset P and a poset Q are isomorphic, denoted P ∼= Q, if there
exists an isomorphism f : P → Q such that s ≤P t if and only if f(s) ≤Q f(t).

A chain is a poset P whose elements are pairwise comparable. Therefore, a chain
is a set with total order. We denote a chain of n elements by n, and every chain of n
elements is isomorphic to {1, 2, . . . , n} equipped with the natural order of integers.

An antichain is a poset P whose elements are pairwise incomparable.

Definition 2.3. A poset Q is a subposet of a poset P if

(1) Q is a subset of elements of P .
(2) For s, t ∈ Q, if s ≤Q t, then s ≤P t.

A poset Q is an induced subposet of a poset P if

(1) Q is a subset of elements of P .
(2) For s, t ∈ Q, s ≤Q t if and only if s ≤P t.

Therefore, an induced subposet of P can be specified by a subset of elements of
P , with the order induced from the partial order on P .
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Definition 2.4. A subset C of a poset P is a chain if it is a chain when regarded
as an induced subposet of P . The length of a finite chain C is l(C) = |C| − 1.

A maximal chain C of a poset P is a chain that is not contained in any larger
chain of P .

A saturated chain C of a poset P is a chain s0 ≺ s1 ≺ · · · ≺ st in which si covers
si−1 for all i = 1, . . . , t.

Definition 2.5. A poset P is graded if every maximal chain of P has the same
length.

The length of a maximal chain of a graded poset P is called the rank of the
graded poset. Let P be a graded poset of rank n. Then, there is a unique rank
function ρ : P → {0, 1, . . . , n} such that

ρ(s) =

{
0 if s is a minimal element of P,

ρ(t) + 1 otherwise, where t is an element covered by s.

Remark 2.6. A graded poset P can be decomposed into level sets, with each level
set consisting of elements of the same rank. Moreover, each level set is an antichain,
and any maximal chain of P contains exactly one element from each level set.

Given two posets P and Q, we can build new posets from them using various
operations.

Definition 2.7. Let P and Q be two posets on disjoint elements.

• The dual of P , denoted P ∗, is the poset on the same set P , with order
defined by s ≤P∗ t if

t ≤P s.
• The disjoint union of P and Q, denoted P+Q, is the poset on the disjoint

union P tQ, with order defined by s ≤P+Q t if

s ≤P t or s ≤Q t.

• The ordinal sum of P and Q, denoted P ⊕Q, is the poset on the disjoint
union P tQ, with order defined by s ≤P⊕Q t if

s ≤P t, s ≤Q t, or both s ∈ P and t ∈ Q.
• The direct product of P and Q, denoted P × Q, is the poset on the

Cartesian product P ×Q, with order defined by (s, s′) ≤P×Q (t, t′) if

s ≤P t and s′ ≤Q t′.

• The ordinal product of P and Q, denoted P ⊗ Q, is the poset on the
Cartesian product P ×Q, with order defined by (s, s′) ≤P⊗Q (t, t′) if

s <P t, or both s =P t and s′ ≤Q t′.

Examples 2.8. Let 1 denote the singleton poset, and 2 denote the 2-element chain.

(1) Let C be a chain of n elements. Then, C ∼= 1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
n times

.

(2) Let A be an antichain of n elements. Then, A ∼= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

(3) Let Bn denote the poset on the power set P ([n]), with partial order given
by inclusion. Then, Bn ∼= 2× 2× · · · × 2︸ ︷︷ ︸

n times

= 2×n.
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Definition 2.9. A poset P is called series-parallel if P can be built up from 1
using the ordinal sum and the disjoint union operations.

3. Neggers-Stanley conjecture

Before we state the Neggers-Stanley conjecture, we need to review the (P, ω)-
partition theory [15] developed by Stanley.

Definition 3.1. A labelling of a poset P is a bijection ω : P → {1, 2, . . . , n}, where
n = |P |. A labelled poset is a pair of (P, ω).

(P, ω) is naturally labelled if ω is order-preserving, i.e., ω(s) ≤ ω(t) if s ≤ t.

Remark 3.2. Since n ∼= {1, 2, . . . , n}, we can think of a labelling of P as a bijection
ω : P → n. Moreover, the set of natural labellings is in bijective correspondence
with the set of linear extensions of poset P .

Definition 3.3. A (P, ω)-partition is a function φ : P → N+ such that for s, t ∈ P
(1) If s ≤ t, then φ(s) ≤ φ(t).
(2) If s ≤ t and ω(s) > ω(t), then φ(s) < φ(t).

A (P, ω)-partition with largest part ≤ m ∈ N is a (P, ω)-partition φ : P →
{1, 2, . . . ,m}. By convention, there is no (P, ω)-partition with largest part ≤ 0,
except when P is the empty poset.

Therefore, a (P, ω)-partition is an order-preserving function which satisfies the
extra condition that if ω(s) > ω(t), then the pair s ≤ t is sent to a strictly ordered
pair φ(s) < φ(t).

In the case of a naturally labelled (P, ω), a (P, ω)-partition is just an order
preserving function.

Remark 3.4. In the theory of P -partitions originated in [15], Stanley defines (P, ω)-
partitions using order-reversing functions. Here, we use order-preserving functions
in the definition of (P, ω)-partitions. Since there is a natural correspondence be-
tween order-preserving functions and order-reversing functions, this change of def-
inition will not affect the formulations of several polynomials of our interest and of
the Neggers-Stanley conjecture.

Now, let Ω(P, ω;m) denote the number of (P, ω)-partitions with largest part
≤ m. Let ej(P, ω) denote the number of surjective (P, ω)-partitions with largest
part = j. Then, we have the following identity.

Proposition 3.5.

Ω(P, ω;x) =
∑
j∈N

ej(P, ω)

(
x

j

)
.

Proof. To prove the above identity, we only need to show

Ω(P, ω;m) =
∑
j∈N

ej(P, ω)

(
m

j

)
.

The set of (P, ω)-partitions with largest part ≤ m can be partitioned according
to the cardinality of the range. For (P, ω)-partitions with largest part ≤ m and
cardinality of range = j, there are exactly ej(P, ω)

(
m
j

)
of them. The proposition

then follows. �
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Therefore, Ω(P, ω;x) is a polynomial of x, which is called the order polynomial
of (P, ω). The order polynomial Ω(P, ω) has degree n = |P |, since en(P, ω) > 0 and
ej(P, ω) = 0 for j > n.

Definition 3.6. The E-polynomial of (P, ω) is defined as

E(P, ω;x) =
∑
j∈N

ej(P, ω)xj .

Consider the linear operator E : R[x] → R[x] defined by E (
(
x
j

)
) = xj . Then,

E(P, ω) = E (Ω(P, ω)).

Definition 3.7. The Jordan-Hölder set of (P, ω), denoted L(P, ω), is the set of
permutations

L(P, ω) = {ωσ−1 : σ ∈ `(P )},
where `(P ) is the set of linear extensions σ : P → {1, 2, . . . , n}.

Given a labelled poset (P, ω), we can build another poset Q on {1, 2, . . . , n} by
identifying s ∈ P with ω(s) ∈ Q. Then, the Jordan-Hölder set of (P, ω) can be
viewed as the set of inverses of linear extensions of this poset Q on {1, 2, . . . , n}.

Definition 3.8. The W -polynomial of (P, ω), also known as the (P, ω)-Eulerian
polynomial [3], is defined as

W (P, ω;x) =
∑

τ∈L(P,ω)

xdes(τ)+1,

where des(τ) is the number of descents of τ , i.e., des(τ) = #{i : τ(i) > τ(i+ 1)}.

Definition 3.9. Two labelled posets (P, ω) and (Q, ν) are similar if there exists
an isomorphism f : P → Q such that ω(s) ≤ ω(t) if and only if ν(f(s)) ≤ ν(f(t)).

It is not hard to see that if two labelled posets are similar, they share identical
order polynomial, E-polynomial, and W -polynomial.

Examples 3.10. Let P be a chain of n elements. Let ω be an arbitrary labelling
of P . Then, the Jordan-Hölder set of (P, ω) contains only one permutation σ ∈
Sn corresponding to the unique linear extension of the chain. Therefore, the W -
polynomial of (P, ω) is

W (P, ω;x) = xdes(σ)+1,

which clearly has only real roots.
Let Q be an antichain of n elements. Let ν be an arbitrary labelling of Q. Then,

the Jordan-Hölder set of (Q, ν) is L(Q, ν) = Sn. Therefore, the W -polynomial of
(Q, ν) is

W (Q, ν;x) =
∑
τ∈Sn

xdes(τ)+1 = xAn(x),

where An(x) is the n-th Eulerian polynomial. It is known that Eulerian polynomials
have only real roots [7].

The two minimal examples above lead to interesting questions about properties
of W -polynomials of labelled posets. Now we are ready to state the Neggers-Stanley
conjecture [6, p. 21].

Conjecture 3.11. For any finite labelled poset (P, ω), the polynomial W (P, ω) has
only real roots.
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This conjecture first appeared in [9], where Neggers conjectured the real-rootedness
of W -polynomial for naturally labelled posets in 1978. Stanley later made the gen-
eralized conjecture above for all labelled posets in 1986.

Recall that E(P, ω;x) =
∑
j ej(P, ω)xj , where ej(P, ω) is the number of sur-

jective (P, ω)-partitions with largest part ≤ j. Let us write the W -polynomial of
(P, ω) as W (P, ω;x) =

∑
j wj(P, ω)xj . By definition of W -polynomial, the coeffi-

cients wj(P, ω) have the following combinatorial interpretation

wj(P, ω) = #{τ ∈ L(P, ω) : des(τ) + 1 = j}.

The following proposition [15] connects the polynomials E(P, ω) and W (P, ω).

Proposition 3.12. Given a labelled poset (P, ω), let n = |P |. Then,

(1− x)nE(P, ω;
x

1− x
) = W (P, ω;x).

Proof. By a change of variable, we may as well show

E(P, ω; y) = (1 + y)nW (P, ω;
y

1 + y
)

=
∑
i∈N

wi(P, ω)yi(1 + y)n−i.

We only need to show

ej(P, ω) =

j∑
i=0

wi(P, ω)

(
n− i
j − i

)
.

Let Fj(P, ω) denote the set of surjective (P, ω)-partitions with largest part =
j. Consider the mapping T : Fj(P, ω) → L(P, ω) where T (f) is defined as the
permutation written as word by writing down the labels of f−1(1) in ascending
order, then writing down the labels of f−1(2) in ascending order, and so on up to
writing down the labels of f−1(j) in ascending order.

For simplicity, we identify the elements of P with the labels assigned to them. For
example, if f ∈ Fj(P, ω) is given by f(1) = 1, f(3) = 1, f(5) = 1, f(4) = 2, f(2) = 3,
then T (f) = 13542 ∈ L(P, ω). It is not hard to check for any (P, ω)-partition
f ∈ Fj(P, ω), we have T (f) ∈ L(P, ω).

For f ∈ Fj(P, ω), the number of descents in T (f) is ≤ j − 1. Now consider
an element σ of the Jordan-Hölder set L(P, ω) with d descents for 0 ≤ d ≤ j − 1.

It is not hard to see that T−1(σ) consists of exactly
(
n−d−1
j−d−1

)
(P, ω)-partitions of

Fj(P, ω). Thus, we have

ej(P, ω) =

j∑
i=0

wi(P, ω)

(
n− i
j − i

)
as desired.

�

Hence, either both or none of E(P, ω) and W (P, ω) are real-rooted. Therefore,
an equivalent formulation of Conjecture 3.11 is

Conjecture 3.13. For any finite labelled poset (P, ω), the polynomial E(P, ω) has
only real roots.
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The study of real-rooted polynomials has a long history that can be dated back
to Newton. The following theorem is a classic result due to Newton. Recall that
a sequence {a0, a1, . . . , an} is unimodal if there exists an index k ∈ N such that
ai ≤ ai+1 for 0 ≤ i ≤ k − 1 and ai ≥ ai+1 for k ≤ i ≤ n − 1. A nonnegative
sequence {a0, a1, . . . , an} is log-concave if a2i ≥ ai−1ai+1 for 1 ≤ i ≤ n− 1.

Theorem 3.14. Let
∑n
i=0 aix

i be a polynomial with nonnegative coefficients that
has only real roots. Then, the sequence {a0, a1, . . . , an} is log-concave and unimodal.
In fact, the sequence { ai

(n
i)
} is log-concave and unimodal.

Consequently, the real-rootedness of a polynomial with nonnegative coefficients
implies the log-concavity and unimodality of the coefficients. Therefore, the follow-
ing conjecture would be a consequence of the Neggers-Stanley conjecture.

Conjecture 3.15. For any finite labelled poset (P, ω), the sequences {ej(P, ω)}
and {wj(P, ω)} are log-concave and unimodal.

Note that although the Neggers-Stanley conjecture implies conjecture 3.15, the
converse is not true. Besides questions about real-rootedness of the E-polynomials
and W -polynomials, there are also other interesting questions that can be asked
about them.

Given a real-rooted polynomial, it is a natural question to ask for the locations
of the roots. Clearly, for a polynomial with nonnegative coefficients, its real roots
are nonpositive. The following proposition indicates that the interval [−1, 0] has
some connection with the roots of E(P, ω).

Proposition 3.16. The real roots of E(P, ω) are in the interval [−1, 0].

To prove the proposition above, we will need the following reciprocity theorems
of Stanley [15, Prop 13.2]. Let ω : P → {1, 2, . . . , n} be a labelling of P . The
complement of ω, denoted ω : P → {1, 2, . . . , n}, is given by ω(s) = n+1−ω(s). In
other words, the complement ω is the unique labelling of P such that ω(s) < ω(t)
if and only if ω(s) > ω(t).

Proposition 3.17. Given a labelled poset (P, ω), let n = |P |. Then,

(a) Ω(P, ω;x) = (−1)nΩ(P, ω;−x).
(b) E(P, ω;x) = (−1)n x

x+1E(P, ω;−x− 1).

(c) W (P, ω;x) = xn+1W (P, ω; 1
x ).

The proof of Proposition 3.16 then follows directly from Proposition 3.17. If α
is a real root of E(P, ω), then −α− 1 is a real root of E(P, ω). Since both E(P, ω)
and E(P, ω) are polynomials with nonnegative coefficients, we have α ≤ 0 and
−α− 1 ≤ 0, from which we arrive at −1 ≤ α ≤ 0.

As a consequence of Proposition 3.16, the Neggers-Stanley conjecture has the
following equivalent formulation:

Conjecture 3.18. For any finite labelled poset (P, ω), the polynomial E(P, ω) is
[−1, 0]-rooted.

Moreover, the multiplicities of −1 and 0 as roots of E(P, ω) have combinatorial
interpretations. Simon [11] proved the following proposition in the case of naturally
labelled posets, and Wagner [17] extended the proposition to all labelled posets.

Proposition 3.19. Let (P, ω) be a nonempty labelled poset. Then,
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(i) The multiplicity of 0 as a root of E(P, ω) is one greater than the maximum
number of descents of (P, ω) in a maximal chain of P .

(ii) The multiplicity of −1 as a root of E(P, ω) is the maximum number of ascents
of (P, ω) in a maximal chain of P .

Proof. Let (P, ω) be a nonempty labelled poset.

(i) Let x0 ≺ x1 ≺ · · · ≺ xk be a maximal chain of P that achieves the maximum
number of descents. Suppose this chain contains m descents. Then, any
surjective (P, ω)-partition will have largest part ≥ m+ 1, and we have

e0(P, ω) = e1(P, ω) = · · · = em(P, ω) = 0.

To show that the multiplicity of 0 as a root of E(P, ω) is m + 1, we need
to show em+1(P, ω) 6= 0. Consider the function f : P → {1, 2, . . . ,m + 1}
where f(s) is defined as the maximum number of descents in a saturated
chain x0 ≺ x1 ≺ · · · ≺ xt = s. Clearly, this is a surjective (P, ω)-partition
with largest part = m+ 1. Thus, em+1(P, ω) 6= 0.

(ii) The multiplicity of −1 as a root of E(P, ω) is the maximum number of ascents
of (P, ω) in a maximal chain of P following (i) and the reciprocity theorem
in Proposition 3.17(b):

E(P, ω;x) = (−1)n
x

x+ 1
E(P, ω;−x− 1)

�

4. Counterexamples to the Neggers-Stanley conjecture

Figure 1. Counterexamples to Neggers conjecture (left) and the
Neggers-Stanley conjecture (right), taken from [16].
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A counterexample to the Neggers-Stanley conjecture was discovered by Brändén
[2] in 2004, which is a poset of 22 elements with an unnatural labelling.

Soon after, a counterexample to Neggers original conjecture was discovered by
Stembridge [16] as shown on the left of Figure 1, which is a naturally labelled poset
of 17 elements. A minimal counterexample to the Neggers-Stanley conjecture was
also provided by Stembridge in [16], as shown on the right of Figure 1.

However, this is not the end of the story. The Neggers-Stanley conjecture turns
out to be true over a number of interesting families of labelled posets. It is again
an interesting question to ask what properties of a labelled poset would ensure the
conditions in the Neggers-Stanley conjecture.

Moreover, Conjecture 3.15 is still open. It is an interesting question to ask what
other properties of a polynomial would ensure the unimodality or the log-concavity
of the coefficients.

In the next three sections, we present a brief survey of the past work on the
Neggers-Stanley conjecture.

5. Operations on labelled posets

The operations on posets can be generalized to labelled posets. We only need to
define the operations on the labellings, while the operations on the posets will stay
unchanged.

Definition 5.1. Let (P, ω) and (Q, ν) be two finite labelled posets on disjoint
elements. Let n = |P |, and m = |Q|.

• The dual of (P, ω) is (P ∗, ω), with the labelling ω : P → {1, 2, . . . , n} given
by the complement of ω.
• The disjoint union of (P, ω) and (Q, ν), denoted (P, ω)+(Q, ν), is defined

as (P +Q,ω + ν), with the labelling

ω + ν : P tQ→ {1, 2, . . . , n+m}
given by any bijection such that there are order-preserving injections

σ :{1, 2, . . . , n} → {1, 2, . . . , n+m},
τ :{1, 2, . . . ,m} → {1, 2, . . . , n+m},

with Im(σ) ∩ Im(τ) = ∅, (ω + ν)|P = σω, and (ω + ν)|Q = τν.
• There are two types of ordinal sums for labelled posets.

– The natural ordinal sum of (P, ω) and (Q, ν), denoted (P, ω) ⊕0

(Q, ν), is defined as (P ⊕Q,ω ⊕0 ν), with the labelling

ω ⊕0 ν : P tQ→ {1, 2, . . . , n+m}
given by (ω ⊕0 ν)|P = ω and (ω ⊕0 ν)|Q = ν + n.

– The strict ordinal sum of (P, ω) and (Q, ν), denoted (P, ω)⊕1 (Q, ν),
is defined as (P ⊕Q,ω ⊕1 ν), with the labelling

ω ⊕1 ν : P tQ→ {1, 2, . . . , n+m}
given by ω ⊕1 ν = ν ⊕0 ω.

• The direct product of (P, ω) and (Q, ν), denoted (P, ω)×(Q, ν), is defined
as (P ×Q,ω × ν), with the labelling

ω × ν : P ×Q→ {1, 2, . . . , nm}
given by (ω × ν)(s, t) = (ω(s)− 1)m+ ν(t).
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• The ordinal product of (P, ω) and (Q, ν), denoted (P, ω) ⊗ (Q, ν), is
defined as (P ⊗Q,ω ⊗ ν), with the labelling

ω ⊗ ν : P ×Q→ {1, 2, . . . , nm}

given by ω ⊗ ν = ω × ν.

Remark 5.2. Although the labelling ω + ν of the disjoint union (P + Q,ω + ν)
in the above definition is given as an arbitrary labelling among a set of labellings
that satisfy the definition, this will not result in ambiguity of the order polynomial
Ω(P + Q,ω + ν), the formula of which is given in Proposition 5.7. Any two such
labellings produce two similar labelled posets. Therefore, this disjoint union is well-
defined with respect to the order polynomials, and hence the E-polynomials and
W -polynomials.

It is natural to ask about the behavior of E-polynomials and W -polynomials
under the operations above. If E-polynomials and W -polynomials behave well
under certain operations, we might expect the real-rootedness of E-polynomials
and W -polynomials, or the log-concavity and unimodality of their coefficients to
be preserved under those operations. Ideally, we would hope the E-polynomial
(W -polynomial) of a binary operation of two posets to depend only on the E-
polynomials (W -polynomials) of those two posets and the cardinality of the two
posets. For example, we want a function F⊕0

: R[x] × R[x] × N × N → R[x] that
describes the effect of the natural ordinal sum on E-polynomials, such that for all
labelled posets (P, ω) and (Q, ν),

F⊕0(E(P, ω), E(Q, ν), |P |, |Q|) = E(P ⊕Q,w ⊕0 ν).

For unary operation of taking dual, we want a function F∗ : R[x]×N→ R[x], such
that for all labelled poset (P, ω),

F∗(E(P, ω), |P |) = E(P ∗, ω).

We first start with the simple unary operation. Consider the dual (P ∗, ω). The
following proposition gives a simple formula of E(P ∗, ω) in terms of E(P, ω).

Proposition 5.3. Let (P, ω) be a labelled poset. Then,

E(P ∗, ω) = E(P, ω)

Proof. Let Fj(P, ω) denote the set of surjective (P, ω)-partitions with largest part =
j, and similarly we have Fj(P ∗, ω). Define T : Fj(P, ω)→ Fj(P ∗, ω) by T (f)(s) =
j+ 1− f(s). It is easy to see that T is a bijection between Fj(P, ω) and Fj(P ∗, ω),
and ej(P, ω) = ej(P

∗, ω). Hence, we have E(P ∗, ω) = E(P, ω). �

The natural ordinal sum and the strict ordinal sum behave well with respect to
E-polynomials. Stanley proved the following proposition in [15, Prop 12.2].

Proposition 5.4. Let (P, ω) and (Q, ν) be two labelled posets. Then,

(a) E(P ⊕Q,ω ⊕0 ν) = x+1
x E(P, ω)E(Q, ν), if P and Q are non-empty.

(b) E(P ⊕Q,ω ⊕1 ν) = E(P, ω)E(Q, ν).

Proof. To prove (a), we need to show

ej(P ⊕Q,ω ⊕0 ν) =
∑
i∈N

ei(P, ω)(ej−i(Q, ν) + ej−i+1(Q, ν)).
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Given any surjective (P ⊕Q,ω⊕0 ν)-partition f : P tQ→ {1, 2, . . . , j}, its images
of P and of Q are either disjoint or sharing exactly one element. In the former case,
there are

∑
i∈N ei(P, ω)ej−i(Q, ν) such (P⊕Q,ω⊕0ν)-partitions. In the latter case,

there are
∑
i∈N ei(P, ω)ej−i+1(Q, ν) such (P ⊕Q,ω ⊕0 ν)-partitions.

(b) follows from the same reasoning.
�

Consequently, if E(P, ω) and E(Q, ν) have only real roots, so do E(P⊕Q,ω⊕0ν)
and E(P ⊕ Q,ω ⊕1 ν). This shows that the set of labelled posets that satisfy the
Neggers-Stanley conjecture is closed under the natural ordinal sum and the strict
ordinal sum.

Another operation that behaves well with respect to E-polynomials is the disjoint
union operation. Before we give the complete statement, we need to define the
diamond product of polynomials.

Definition 5.5. Given f, g ∈ R[x], the diamond product of f and g is defined as

f ♦ g =
∑
k∈N

xk(x+ 1)k

k!k!
(Dkf)(Dkg),

where D = d
dx is the differential operator.

Recall that E : R[x] → R[x] is the linear operator defined by E (
(
x
j

)
) = xj .

Wagner [17] proved the following theorem.

Theorem 5.6. Let f, g ∈ R[x] be two polynomials. Then,

E (fg) = E (f) ♦ E (g)

Proof. We will need the following two identities:

(
x

i

)(
x

j

)
=
∑
k∈N

(
k

k − i, k − j, i+ j − k

)(
x

k

)
,

Dixj =
∑
k∈N

(
i

k

)
(j)kx

j−kDi−k,

where D is the differential operator, and (t)k = t(t − 1) . . . (t − k + 1) is the k-
th falling factorial. The first identity counts the number of ways of choosing two
possibly overlapping sets of size i and size j out of x elements. The second identity
follows from applying the product rule of differentiation.
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Recall that {
(
x
i

)
} is a basis of the space R[x]. Let f =

∑
i∈N αi

(
x
i

)
, and g =∑

i∈N βi
(
x
i

)
. Then,

E (fg) = E

∑
i,j∈N

αiβj

(
x

i

)(
x

j

)
= E

∑
i,j∈N

αiβj
∑
k∈N

(
k

k − i, k − j, i+ j − k

)(
x

k

)
=
∑
i,j∈N

αiβj
∑
k∈N

(
k

k − i, k − j, i+ j − k

)
xk

=
∑
i,j∈N

αiβj
∑
k∈N

k!k!

(k − i)!(k − j)!(i+ j − k)!k!
xk

=
∑
i,j∈N

αiβj
∑
k∈N

(k)i(k)j
(i+ j − k)!k!

xk

=
∑
i,j∈N

αiβj
(i+ j)!

∑
k∈N

(k)i(k)j

(
i+ j

k

)
xk

=
∑
i,j∈N

αiβj
(i+ j)!

∑
k∈N

(k)j

(
i+ j

k

)
xiDixk

=
∑
i,j∈N

αiβj
(i+ j)!

∑
k∈N

(
i+ j

k

)
xiDixjDjxk

=
∑
i,j∈N

αiβj
(i+ j)!

xiDixjDj
∑
k∈N

(
i+ j

k

)
xk

=
∑
i,j∈N

αiβj
(i+ j)!

xiDixjDj(x+ 1)i+j .

Now, each general term in the summation can be further expressed as

1

(i+ j)!
xiDixjDj(x+ 1)i+j =

1

i!
xiDixj(x+ 1)i

=
1

i!
xi
∑
k∈N

(
i

k

)
(j)kx

j−kDi−k(x+ 1)i

=
1

i!
xi
∑
k∈N

(
i

k

)
(i)i−k(j)kx

j−k(x+ 1)k

=
∑
k∈N

(
i

k

)
(j)k
k!

xi+j−k(x+ 1)k

=
∑
k∈N

(
i

k

)(
j

k

)
xi+j−k(x+ 1)k.
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Substituting this into E (fg), we get

E (fg) =
∑
i,j∈N

αiβj
∑
k∈N

(
i

k

)(
j

k

)
xi+j−k(x+ 1)k

=
∑
k∈N

xk(x+ 1)k

k!k!

∑
i,j∈N

αiβj(i)k(j)kx
i+j−2k

=
∑
k∈N

xk(x+ 1)k

k!k!

(∑
i∈N

αi(i)kx
i−k

)∑
j∈N

βj(j)kx
j−k


=
∑
k∈N

xk(x+ 1)k

k!k!

(
DkE (f)

) (
DkE (g)

)
= E (f) ♦ E (g)

as desired.
�

It is easy to see that the disjoint union has a simple effect on the order polyno-
mials, as shown in the next proposition.

Proposition 5.7. Let (P, ω) and (Q, ν) be two labelled posets. Then,

Ω(P +Q,ω + ν) = Ω(P, ω)Ω(Q, ν).

Recall that the E-polynomial E(P, ω) and the order polynomial Ω(P, ω) are
related in the following way:

E(P, ω) = E (Ω(P, ω)).

Therefore, combining Theorem 5.6 and Proposition 5.7 immediately gives the de-
scription of effect of the disjoint union on the E-polynomials.

Theorem 5.8. Let (P, ω) and (Q, ν) be two labelled posets. Then,

E(P +Q,ω + ν) = E(P, ω) ♦ E(Q, ν).

Moreover, the diamond product has a surprising effect on [−1, 0]-rooted polyno-
mials. Specifically, Wagner proved the following theorem. The proof of the theorem
is quite difficult, and we will not present its proof here. See [18].

Theorem 5.9. If f, g ∈ R[x] are both [−1, 0]-rooted, then f♦g is also [−1, 0]-rooted.

Recall from Proposition 3.16 that E(P, ω) have only real roots if and only if
E(P, ω) is [−1, 0]-rooted. As a consequence, Theorem 5.9 shows that if E(P, ω)
and E(Q, ν) both have only real roots, so does E(P + Q,ω + ν). Thus, the set of
labelled posets that satisfy the Neggers-Stanley conjecture is also closed under the
disjoint union.

Therefore, the set of labelled posets that satisfy the Neggers-Stanley conjecture
is closed under the ordinal sum and the disjoint union. In particular, we deduce
that the family of series-parallel labelled posets satisfies the Neggers-Stanley con-
jecture [17]. A series-parallel labelled poset is different from a series-parallel poset
with an arbitrary labelling, but the labelling of a series-parallel labelled poset is
produced from the ordinal sum and the disjoin union operations. In other words, a
series-parallel labelled poset is a labelled poset that can be built up from labelled
singletons (1, ι) using the ordinal sum and the disjoint union operations.
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Theorem 5.10. Let (P, ω) be a series-parallel labelled poset. Then, E(P, ω) has
only real roots.

Proof. We prove the statement by induction on |P |.
If |P | = 1, then E(P, ω) = x, which has only real roots.
If |P | > 1, by definition of series-parallel labelled poset, there exist series-parallel

labelled posets (Q, ν), (S, µ) such that (P, ω) can be obtained by taking the ordinal
sum or the disjoint union of (Q, ν) and (S, µ), and by induction the E-polynomials
of both posets have only real roots. Since the ordinal sum and the disjoint union
preserve the real-rootedness of E-polynomials, we conclude that E(P, ω) has only
real roots. �

Contrary to those of the ordinal sum and the disjoint union, the behaviors of the
ordinal product and the direct product on the E-polynomials and W -polynomials
are much harder to understand. As a result, if (P, ω) and (Q, ν) are two labelled
posets that satisfy the Neggers-Stanley conjecture, we do not have a general state-
ment regarding whether the Neggers-Stanley conjecture holds for (P ⊗Q,ω⊗ ν) or
(P ×Q,ω × ν). In this work, we give some evidence on the difficulty of obtaining
a general statement of the behaviors of the ordinal product and the direct product
with respect to the E-polynomials or W -polynomials.

The following proposition shows that the effect of the direct product on W -
polynomials cannot be described by a function H× : R[x] × R[x] × N × N → R[x],
and similarly, the effect of the ordinal product onW -polynomials cannot be descibed
by a function H⊗ : R[x]× R[x]× N× N→ R[x].

1

4
32

1

42

3
(P1, ω1) (P2, ω2)

1

2

(C2, ν)

Figure 2. Two labelled posets (P1, ω1) and (P2, ω2) of cardinality
4 sharing the same W -polynomial (left), and a naturally labelled
chain of cardinality 2 (right).

1

432

5

876

1

4

3

2

5

8

7

6

(C2 × P1, ν × ω1) (C2 × P2, ν × ω2)

Figure 3. The direct products (C2 × P1, ν × ω1) and (C2 × P2, ν × ω2).
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1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(P1 ⊗ C2, ω1 ⊗ ν) (P2 ⊗ C2, ω2 ⊗ ν)

Figure 4. The ordinal products (P1 ⊗ C2, ω1 ⊗ ν) and (P2 ⊗ C2, ω2 ⊗ ν).

Proposition 5.11. The following functions do not exist:

(a) A function H× : R[x] × R[x] × N × N → R[x] such that for all labelled posets
(P, ω) and (Q, ν),

H×(W (P, ω),W (Q, ν), |P |, |Q|) = W (P ×Q,ω × ν).

(b) A function H⊗ : R[x] × R[x] × N × N → R[x] such that for all labelled posets
(P, ω) and (Q, ν),

H⊗(W (P, ω),W (Q, ν), |P |, |Q|) = W (P ⊗Q,ω ⊗ ν).

Proof. Consider the two labelled posets (P1, ω1) and (P2, ω2) in Figure 2, both of
cardinality 4. They have identical W -polynomial:

W (P1, ω1;x) = W (P2, ω2;x) = x+ 4x2 + x3.

Let (C2, ν) denote a naturally labelled 2-element chain, as shown in Figure 2.

(a) Consider the direct products (C2 × P1, ν × ω1) and (C2 × P2, ν × ω2) as shown
in Figure 3. The corresponding W -polynomials are:

W (C2 × P1, ν × ω1;x) = x+ 27x2 + 116x3 + 116x4 + 27x5 + x6

W (C2 × P2, ν × ω2;x) = x+ 27x2 + 112x3 + 112x4 + 27x5 + x6

Thus, there does not exist a function H× : R[x]×R[x]×N×N→ R[x] such
that for all labelled posets (P, ω) and (Q, ν),

H×(W (P, ω),W (Q, ν), |P |, |Q|) = W (P ×Q,ω × ν).

(b) Consider the ordinal products (P1⊗C2, ω1⊗ ν) and (P2⊗C2, ω2⊗ ν) as shown
in Figure 4. The corresponding W -polynomials are:

W (P1 ⊗ C2, ω1 ⊗ ν;x) = x+ 20x2 + 48x3 + 20x4 + x5

W (P2 ⊗ C2, ω2 ⊗ ν;x) = x+ 16x2 + 36x3 + 16x4 + x5

Thus, there does not exist a function H⊗ : R[x]×R[x]×N×N→ R[x] such
that for all labelled posets (P, ω) and (Q, ν),

H⊗(W (P, ω),W (Q, ν), |P |, |Q|) = W (P ⊗Q,ω ⊗ ν).

�
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Note that the E-polynomials are explicitly related to the W -polynomials by
Proposition 3.12. Hence, the effect of the direct product or the ordinal product on
the E-polynomials can neither be described by functions R[x]×R[x]×N×N→ R[x].

Nevertheless, the ordinal product, when the first operand is restricted to series-
parallel labelled posets, behaves well with respect to the E-polynomials. The follow-
ing proposition follows directly from the effects of the ordinal sum and the disjoint
union on E-polynomials given in Proposition 5.4 and Theorem 5.8.

Proposition 5.12. Let (P, ω) be a series-parallel labelled poset. Then, there exists
an explicit function T⊗(P, ω) : R[x]→ R[x] such that for all labelled poset (Q, ν),

T⊗(P, ω)(E(Q, ν)) = E(P ⊗Q,ω ⊗ ν).

Moreover, if E(Q, ν) has only real roots, so does E(P ⊗Q,ω ⊗ ν).

Proof. We prove the statement by induction on |P |.
If |P | = 1, then we have (P ⊗Q,ω ⊗ ν) ∼= (Q, ν). Thus, we have T⊗(P, ω) = Id,

which preserves the real-rootedness of polynomials.
If |P | > 1, by definition of series-parallel labelled posets, there exist nonemepty

(P1, ω1) and (P2, ω2) such that P can be obtained by applying the natural ordinal
sum, the strict ordinal sum, or the disjoint union on (P1, ω1) and (P2, ω2). By
induction, there exist T⊗(P1, ω1), T⊗(P2, ω2) : R[x]→ R[x] such that

T⊗(P1, ω1)(E(Q, ν)) = E(P1 ⊗Q,ω1 ⊗ ν),

T⊗(P2, ω2)(E(Q, ν)) = E(P2 ⊗Q,ω2 ⊗ ν),

for all labelled poset (Q, ν).
For the ordinal product, we have the following distributive properties:

(P1 + P2, ω1 + ω2)⊗ (Q, ν) ∼= (P1 ⊗Q,ω1 ⊗ ν) + (P2 ⊗Q,ω2 ⊗ ν),

(P1 ⊕ P2, ω1 ⊕0 ω2)⊗ (Q, ν) ∼= (P1 ⊗Q,ω1 ⊗ ν)⊕0 (P2 ⊗Q,ω2 ⊗ ν),

(P1 ⊕ P2, ω1 ⊕1 ω2)⊗ (Q, ν) ∼= (P1 ⊗Q,ω1 ⊗ ν)⊕1 (P2 ⊗Q,ω2 ⊗ ν).

If (P, ω) ∼= (P1 + P2, ω1 + ω2), by Theorem 4.8, we have

T⊗(P, ω)(E(Q, ν)) = E((P1 + P2, ω1 + ω2)⊗ (Q, ν))

= E((P1 ⊗Q,ω1 ⊗ ν) + (P2 ⊗Q,ω2 ⊗ ν))

= E(P1 ⊗Q,ω1 ⊗ ν) ♦ E(P2 ⊗Q,ω2 ⊗ ν)

= T⊗(P1, ω1)(E(Q, ν)) ♦ T⊗(P2, ω2)(E(Q, ν)).

T⊗(P, ω) = T⊗(P1, ω1) ♦ T⊗(P2, ω2),

which preserves the real-rootedness of E-polynomials by Theorem 5.9.
Similarly, if (P, ω) ∼= (P1 ⊕ P2, ω1 ⊕0 ω2) or (P, ω) ∼= (P1 ⊕ P2, ω1 ⊕1 ω2), we

can obtain T⊗(P, ω) by Proposition 5.4, which preserves the real-rootedness of E-
polynomials. �

Next, we introduce the notion of block posets and the composition of posets.

Definition 5.13. A block poset is a poset P together with a partition of elements
P = B1 t B2 t · · · t Bk such that for all pairs Bi, Bj with i 6= j, if s ≤ t for some
s ∈ Bi, t ∈ Bj , then u ≤ v for all u ∈ Bi, v ∈ Bj .
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The blocks of the block poset P are the parts in the partition of elements P =
B1 tB2 t · · · tBk. The skeleton of the block poset P is the poset T on the blocks
{Bi}ki=1, with the order defined by Bi ≤T Bj if

s ≤P t for some s ∈ Bi, t ∈ Bj .

A block labelled poset is a block poset obtained from a composition operation
in the following definition.

Definition 5.14. Given a labelled poset (P, ω), let (Q, ν) = {(Qr, νr)}r∈P be a
sequence of nonempty labelled posets indexed by elements of P .

The block labelled poset of composing (Q, ν) into (P, ω), denoted (P [Q], ω[ν]),
is the following labelled poset on the disjoint union

⊔
r∈P Qr,

(i) with the labelled blocks given by (Qr, νr) of (Q, ν),
(ii) the order defined by s ≤P [Q] t if

s ≤Qr t for some (Qr, νr) of (Q, ν), or

s ∈ Qu, t ∈ Qv, and u ≤P v for two different blocks (Qu, νu) and (Qv, νv).

(iii) and the labelling ω[ν] given by the unique bijection such that
(a) If s, t ∈ Qr and νr(s) ≤ νr(t) for some (Qr, νr) of (Q, ν), then

(ω[ν])(s) ≤ (ω[ν])(t).

(b) If s ∈ Qu, t ∈ Qv for two different blocks (Qu, νu) and (Qv, νv) of (Q, ν),
and ω(u) ≤ ω(v), then

(ω[ν])(s) ≤ (ω[ν])(t).

Remark 5.15. Let (P, ω) be a labelled poset, and (Q, ν) = {(Qr, νr)}r∈P be a
sequence of nonempty labelled posets indexed by elements of P . Then, P is exactly
the skeleton of the block labelled poset (P [Q], ω[ν]).

The skeleton of a block poset can be viewed as the glue to the blocks, with the
order of elements from different blocks given by the order of the skeleton.

Note that when all the blocks (Qr, νr) of (Q, ν) are identical, the block labelled
poset (P [Q], ω[ν]) is exactly the ordinal product (P ⊗Qr, ω ⊗ νr).

Immediately, we can generalize Proposition 5.12 to the following proposition, the
proof of which is essentially the same.

Proposition 5.16. Let (P, ω) be a series-parallel labelled poset. Let (Q, ν) =
{(Qr, νr)}r∈P be a sequence of nonempty labelled posets such that E(Qr, νr) is real-
rooted for all (Qr, νr) in (Q, ν). Then, E(P [Q], ω[ν]) has only real roots.

Wagner studied the composition (P [Q], ω[ν]) when the cardinality of P is at
most 3. He proved the following proposition [17].

Proposition 5.17. Let (P1, ω1), (P2, ω2), and (P3, ω3) be three nonempty labelled
posets. Let (T, µ) be a labelled poset of cardinality 3.

If E(P1, ω1), E(P2, ω2), and E(P3, ω3) are all real-rooted, then

E(T [P1, P2, P3], µ[ω1, ω2, ω3])

is also real-rooted.

By further proving that every nonempty labelled forest is similar to a recursively
labelled forest (see [1, Section 4] for the notion of recursive labelling), Wagner was
able to prove the following proposition [17] using Proposition 5.17.
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Proposition 5.18. Let (P, ω) be a nonempty labelled forest. Then, E(P, ω) is
real-rooted.

6. Interlacing property

In this section, we consider the interlacing properties of E-polynomials.

Definition 6.1. Let f, g ∈ R[x] be polynomials such that deg(f) = deg(g)+1 = d.
We say g interlaces f , denoted g � f , if f and g are real-rooted, and

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ βd−1 ≤ αd,
where α1 ≤ α2 ≤ · · · ≤ αd and β1 ≤ β2 ≤ · · · ≤ βd−1 are roots of f and g
respectively.

Moreover, if the inequalities are strict, i.e.,

α1 < β1 < α2 < β2 < · · · < βd−1 < αd,

we say g strictly interlaces f , denoted g ≺ f .

Brändén proved that the interlacing properties of polynomials are preserved
under taking diamond product with [−1, 0]-rooted polynomials, as stated in the
following theorem [4].

Theorem 6.2. Let h ∈ R[x] be [−1, 0]-rooted, and let f ∈ R[x] be real-rooted.

(a) Then, f ♦ h is [−1, 0]-rooted, and if g � f , then g ♦ h � f ♦ h.
(b) If h is (−1, 0)-rooted and simple-rooted, and f is simple-rooted, then f ♦ h is

simple-rooted, and for all g ≺ f , g ♦ h ≺ f ♦ h.

Recall that for a labelled poset (P, ω), E(P, ω) is a degree n polynomial where
n = |P |. For each s ∈ P , let (P \ {s}, ωs) be the induced labelled poset on P \ {s}
with the labelling ωs given by ωs = σsω, where

σs : {1, 2, . . . , n} \ {ω(s)} → {1, 2, . . . , n− 1}
is the unique order-preserving bijection. Then, E(P \ {s}, ωs) is a degree n − 1
polynomial. Without causing confusion, we will drop the subscript of ωs and simply
write (P \ {s}, ω).

Let I denote the family of finite labelled posets (P, ω) such that for all s ∈ P ,

E(P \ {s}, ω) � E(P, ω).

Brändén [4] proved the following theorem.

Theorem 6.3. The family I is closed under the ordinal sum and the disjoint union.

Proof. We will prove closure under each operation separately. Let (P, ω), (Q, ν) ∈ I
be two labelled posets.

• (Ordinal Sum) Let (S, µ) = (P ⊕Q,ω ⊕0 ν). Let s ∈ P .
If |P | = 1, then

E(S \ {s}, µ) = E((P \ {s})⊕Q,ω ⊕0 ν)

= E(Q, ν)

� (x+ 1)E(Q, ν)

= E(P ⊕Q,ω ⊕0 ν).

If |P | > 1, then
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E(S \ {s}, µ) = E((P \ {s})⊕Q,ω ⊕0 ν)

=
x+ 1

x
E(P \ {s}, ω)E(Q, ν)

� x+ 1

x
E(P, ω)E(Q, ν)

= E(P ⊕Q,ω ⊕0 ν).

Therefore, we have (S, µ) = (P ⊕Q,ω ⊕0 ν) ∈ I.
Similarly, we can show that (P ⊕Q,ω ⊕1 ν) ∈ I.

• (Disjoint Union) Let (S, µ) = (P +Q,ω + ν). Let s ∈ P .
By Theorem 5.8, we have

E(S \ {s}, µ) = E((P \ {s}) +Q,ω + ν)

= E(P \ {s}, ω) ♦ E(Q, ν).

By Proposition 3.16, E(Q, ν) is [−1, 0]-rooted. By Theorem 6.2, we have

E(S \ {s}, µ) = E(P \ {s}, ω) ♦ E(Q, ν)

� E(P, ω) ♦ E(Q, ν)

= E(P +Q,ω + ν).

Therefore, we have (S, µ) = (P +Q,ω + ν) ∈ I.

�

Corollary 6.4. Let (P, ω) be a series-parallel labelled poset. Then, for all s ∈ P ,

E(P \ {s}, ω) � E(P, ω).

We can further generalize Theorem 6.3 by considering the interlacing properties
of polynomials whose degrees differ by more than one.

Definition 6.5. Let f, g ∈ R[x] be polynomials such that deg(f) = deg(g) + k = d
for some k > 0. We say g k-interlaces f , denoted g �k f , if f and g are real-rooted,
and for 1 ≤ i ≤ d− k,

αi ≤ βi ≤ αi+k,
where α1 ≤ α2 ≤ · · · ≤ αd and β1 ≤ β2 ≤ · · · ≤ βd−k are roots of f and g
respectively.

Moreover, if the inequalities are strict, i.e., for 1 ≤ i ≤ d− k,

αi < βi < αi+k,

we say g strictly k-interlaces f , denoted g ≺k f .

Lemma 6.6. Given k ∈ Z+, let f0, fk ∈ R[x] be polynomials such that deg(fk) =
deg(f0) + k = d. Then, f0 �k fk if and only if there exist f1, f2, . . . , fk−1 ∈ R[x]
such that

f0 � f1 � · · · � fk−1 � fk.

Proof. If there exist f1, f2, . . . , , fk−1 ∈ R[x] such that

f0 � f1 � · · · � fk−1 � fk,

then clearly f0 �k fk.
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Now suppose f0 �k fk. We prove the statement by induction on k. If k = 1,
then we are done. If k > 1, we will show that there exists fk−1 ∈ R[x] such that

f0 �k−1 fk−1 � fk.
Let α1 ≤ α2 ≤ · · · ≤ αd be the roots of fk, and β1 ≤ β2 ≤ · · · ≤ βd−k be the

roots of f0. Then, for 1 ≤ i ≤ d− k,

αi ≤ βi ≤ αi+k.
Since βi−k+1 ≤ αi+1 and αi ≤ βi, we have

αi ≤ βi−k+1 ≤ βi ≤ αi+1.

Then, we can choose γ1 ≤ γ2 ≤ · · · ≤ γd−k such that

αi ≤ βi−k+1 ≤ γi ≤ βi ≤ αi+1.

For d − k < i ≤ d − 1, we simply choose γi = αi+1. Then, we get a sequence
γ1 ≤ γ2 ≤ · · · ≤ γd−1 such that for 1 ≤ i ≤ d − k, γi ≤ βi ≤ γi+k−1, and for
1 ≤ i ≤ d − 1, αi ≤ γi ≤ αi+1. Let fk−1 ∈ R[x] be the polynomial with roots
γ1 ≤ γ2 ≤ · · · ≤ γd−1. Then,

f0 �k−1 fk−1 � fk.
By induction, there exist f1, f2, . . . , fk−1 ∈ R[x] such that

f0 � f1 � · · · � fk−1 � fk.
�

Now we consider the interlacing properties of the E-polynomials of block labelled
posets. Let (P [Q], ω[ν]) be a block labelled poset with the set of labelled blocks
(Q, ν) = {(Qr, νr)}r∈P . For each (Qr, νr), let (P [Q] \ Qr, ω[ν]Qr ) be the induced
block labelled poset on P [Q] \ Qr with the labelling ω[ν]Qr

given by ω[ν]Qr
=

σQr
ω[ν], where

σQr
: {1, 2, . . . , n} \ ω(Qr)→ {1, 2, . . . , n− |Qr|}

is the unique order-preserving bijection. Without causing confusion, we will drop
the subscript of ω[ν]Qr and simply write (P [Q] \Qr, ω[ν]).

Let B denote the family of finite block labelled posets (P [Q], ω[ν]) with the set
of blocks (Q, ν) = {(Qr, νr)}r∈P such that for all (Qr, νr),

E(P [Q] \Qr, ω[ν]) �k E(P [Q], ω[ν]),

where k = |Qr|.
When we talk about the ordinal sum or the disjoint union of two block labelled

posets (P [Q], ω[ν]) and (S[T ], µ[τ ]), the resulting block labelled poset has the set
of labelled blocks as the disjoint union of the blocks of (Q, ν) and (T, τ), and the
ordinal sum or the disjoint union operation is applied on (P, ω) and (S, µ).

Theorem 6.7. The family B is closed under the ordinal sum and the disjoint union.

Proof. By Theorem 6.2 and Lemma 6.6, we can deduce that the k-interlacing prop-
erties of polynomials are preserved under taking diamond product with [−1, 0]-
rooted polynomials:

If h ∈ R[x] is [−1, 0]-rooted, and f, g ∈ R[x] are real-rooted polynomials such
that g �k f , then g ♦ h �k f ♦ h.

The rest of the proof is essentially the same as the proof of Theorem 6.3. �
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We can then deduce from Theorem 6.7 the interlacing properties of the E-
polynomials of block series-parallel labelled posets with labelled blocks that satisfy
the Neggers-Stanley conjecture.

Corollary 6.8. Let (P, ω) be a series-parallel labelled poset. Let (Q, ν) = {(Qr, νr)}r∈P
be a sequence of nonempty labelled posets such that E(Qr, νr) is real rooted for all
(Qr, νr). Then, for all (Qr, νr) of (Q, ν),

E(P [Q] \Qr, ω[ν]) �k E(P [Q], ω[ν]),

where k = |Qr|.

7. Sign-graded poset

A recent progress on the Neggers-Stanley conjecture is the unimodality of the
W -polynomails of sign-graded posets due to Brändén [5]. Brändén extended the
result by Reiner and Welker [10] that proved the unimodality of the W -polynomials
of naturally labelled graded posets.

Recall that a poset P is graded if all maximal chains of P have the same length.
A sign-graded poset is a generalization of the above notion for labelled posets.

Let (P, ω) be a labelled poset. Let C(P ) = {s ≺ t : s, t ∈ P} denote the set
of covering relations. Associate a function εω : C(P ) → {−1, 1} to the covering
relations of the labelled poset (P, ω) by

εω(s, t) =

{
1 if ω(s) < ω(t)

−1 if ω(s) > ω(t)

Definition 7.1. Let (P, ω) be a labelled poset. Let εω be the function of the
covering relations of P as given above. (P, ω) is sign-graded if for every maximal
chain x0 ≺ x1 ≺ · · · ≺ xt, the sum

t∑
i=1

εω(xi−1, xi)

is the same. This common value is called the rank of (P, ω), denoted r(ω). In this
case, P is said to be ω-graded with rank r(ω).

The rank function of a sign-graded poset (P, ω) is ρω : P → Z defined by

ρω(s) =

{
0 if s is a minimal element of P

ρω(t) + εω(t, s) otherwise, where t is an element covered by s

With this definition of the rank function, ρω(s) =
∑a
i=1 εω(xi−1, xi) for any

saturated chain x0 ≺ x1 ≺ · · · ≺ xa = s, where x0 is a minimal element of P . For
any saturated chain s = y0 ≺ y1 ≺ · · · ≺ yb where yb is a maximal element of P ,

we have r(ω)− ρω(s) =
∑b
i=1 εω(yi−1, yi). Figure 5 is an example of a sign-graded

poset together with the associated rank function.
Note that a naturally labelled poset (P, ω) is sign-graded if and only if P is

graded.
Brändén proved that the order polynomial of a sign-graded poset (P, ω) depends

only on the underlying poset and the rank r(ω), as shown in the following propo-
sition [5].
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Figure 5. An example of a sign-graded poset (left), and the as-
sociated rank function (right).

εω(x, y) εν(x, y) f ∆ T (f)

1 1 f(x) ≤ f(y) ∆(x) = ∆(y) T (f)(x) ≤ T (f)(y)
1 −1 f(x) ≤ f(y) ∆(x) = ∆(y)− 1 T (f)(x) < T (f)(y)
−1 1 f(x) < f(y) ∆(x) = ∆(y) + 1 T (f)(x) ≤ T (f)(y)
−1 −1 f(x) < f(y) ∆(x) = ∆(y) T (f)(x) < T (f)(y)

Figure 6. Possible combinations of εω and εν , taken from [5].

Proposition 7.2. Let P be an ω-graded and ν-graded poset. Then,

Ω(P, ω;x− r(ω)

2
) = Ω(P, ν;x− r(ν)

2
).

Proof. Let O(P, ω) and O(P, ν) denote the set of (P, ω)-partitions and the set of
(P, ν)-partitions respectively. Define a mapping T : O(P, ω)→ O(P, ν) as

T (f)(x) = f(x) + ∆(x), where

∆(x) =
ρω(x)− ρν(x)

2
.

First we show that for any (P, ω)-partition f ∈ O(P, ω), we have T (f) ∈ O(P, ν).
Observe that ρω(x) and ρν(x) have the same parity. Therefore, ∆(x) is an integer.
Now consider a pair of elements x ≺ y. Figure 6 shows that T (f) is a (P, ν)-
partition, provided that T (f) > 0. Note that T (f) achieves minimum on some
minimal element s ∈ P , where we have ∆(s) = 0. Hence, T (f)(s) = f(s) > 0 for
minimal element s ∈ P , proving that T (f) is indeed a (P, ν)-partition.

Moreover, T is a bijection between the (P, ω)-partitions and the (P, ν)-partitions,
since T−1 is given by

T−1(g)(x) = g(x)−∆(x).

Now consider a (P, ω)-partition f ∈ O(P, ω) with largest part ≤ m. Then, for
any maximal element t ∈ P , f(t) ≤ m. Note that for maximal element t ∈ P , we
have

∆(t) =
εω(t)− εν(t)

2
=
r(ω)− r(ν)

2
,

T (f)(t) = f(t) + ∆(t) ≤ m+
r(ω)− r(ν)

2
.
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The same observation holds for T−1. Thus, there is a bijection between the (P, ω)-
partitions with largest part ≤ m and the (P, ν)-partitions with largest part ≤
m+ r(ω)−r(ν)

2 , which gives

Ω(P, ω;x) = Ω(P, ν;x+
r(ω)− r(ν)

2
).

�

Proposition 7.3. Given an ω-graded poset P , let n = |P |. Then,

Ω(P, ω;x) = (−1)nΩ(P, ω;−x− r(ω)).

Proof. Note that for the complement labelling ω, P is also ω-graded, and

εω(s, t) = −εω(s, t)

r(ω) = −r(ω)

By the reciprocity theorem for the order polynomials given in Proposition 3.17,

Ω(P, ω;x) = (−1)nΩ(P, ω;−x).

Combined with Proposition 7.2,

Ω(P, ω;−x) = Ω(P, ω;−x+
r(ω)− r(ω)

2
)

= Ω(P, ω;−x− r(ω))

Ω(P, ω;x) = (−1)nΩ(P, ω;−x− r(ω)).

�

Corollary 7.4. Let P be an ω-graded poset. Then, W (P, ω;x) is symmetric with

center of symmetry n+1−r(ω)
2 . If P is also ν-graded, then

W (P, ω;x) = xr(ν)−r(ω)W (P, ν;x).

Proof. By combinatorial reasoning similar to the one in Proposition 3.12, we can
obtain

Ω(P, ω;x) =
∑
j∈N

wj(P, ω)

(
x+ n− j

n

)
.

By Proposition 7.3, we have

Ω(P, ω;x) = (−1)nΩ(P, ω;−x− r(ω))

=
∑
j∈N

wj(P, ω)(−1)n
(
−x− r(ω) + n− j

n

)

=
∑
j∈N

wj(P, ω)

(
x+ r(ω) + j − 1

n

)

=
∑
j∈N

wn+1−r(ω)−j(P, ω)

(
x+ n− j

n

)
Therefore, wj(P, ω) = wn+1−r(ω)−j , and W (P, ω;x) is symmetric with center of

symmetry n+1−r(ω)
2 . The relation of W -polynomials of (P, ω) and (P, ν) follows

from Proposition 7.2.
�
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Therefore, when studying the W -polynomial of a sign-graded poset, we may
choose a labelling ω of our own choice such that P is ω-graded for the poset P ,
since choosing different consistent labellings of a sign-graded poset only results in a
shift of the coefficients as shown in Corollary 7.4. The following canonical labelling
is a good choice for sign-graded posets.

Note that if P is ω-graded, then the length of every maximal chain of P has
the same parity. Define the canonical labelling τ in the following way: we first
define the associated function ετ on the covering relations, and then shows that
there exists a labelling τ that is consistent with ετ .

Define ετ (s, t) = (−1)l(C), where C is a saturated chain x0 ≺ x1 ≺ · · · ≺ xk = s
and x0 is a minimal element of P . The corresponding rank function ρτ takes value
in {0, 1}. Now pick a labelling τ by assigning the larger labels to the set of elements
with rank 1, and the smaller labels to the set of elements with rank 0. It is easy
to verify that this labelling is consistent with ετ , as rank-0 elements are covered by
rank-1 elements and vice versa.

Any such labelling τ of a sign-graded poset P is called the canonical labelling of
P . P is τ -graded with rank function ρτ taking values in {0, 1}. Moreover, for any
covering relation s ≺ t, if ρτ (s) < ρτ (t), then τ(s) < τ(t).

Next we turn the attention to the Jordan-Hölder set of sign-graded posets. The
intuition behind the definition of sign-gradedness lies in the following observation.
Recall that the Jordan-Hölder set L(P, ω) of a labelled poset (P, ω) is the set of
permutations of the labels of P corresponding to the set of linear extensions of P .
Let x, y ∈ P be a pair of incomparable elements. Let P yx be the poset obtained
from P by adding the covering relation x ≺ y, and similarly we have P xy . Since the
label of x comes either before or after that of y in any element of the Jordan-Hölder
set L(P, ω), we have

L(P, ω) = L(P yx , ω) t L(P xy , ω).

Let P be a τ -graded poset, where τ is the canonical labelling. Let x, y ∈ P be a
pair of incomparable elements such that ρτ (y) = ρτ (x) + 1. Note that τ being the
canonical labelling implies that τ(x) < τ(y). Let P yx and P xy be the two posets as
defined above. Then, they are also τ -graded as shown in the next proposition [5].

Proposition 7.5. P yx and P xy are τ -graded with the same rank as (P, τ).

Proof. First, we show P yx is τ -graded.
Let s0 ≺ s1 ≺ · · · ≺ st be a maximal chain in P yx such that sk = x and sk+1 = y

for some k. Then,

t∑
i=1

ετ (si−1, si) =

k∑
i=1

ετ (si−1, si) + ετ (x, y) +

t∑
i=k+2

ετ (si−1, si)

= ρτ (x) + ετ (x, y) + (r(τ)− ρτ (y))

= ρτ (x) + 1 + (r(τ)− ρτ (y))

= r(τ)

Next, we show P xy is τ -graded.
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Let s0 ≺ s1 ≺ · · · ≺ st be a maximal chain in P xy such that sk = y and sk+1 = x
for some k. Then,

t∑
i=1

ετ (si−1, si) =

k∑
i=1

ετ (si−1, si) + ετ (y, x) +

t∑
i=k+2

ετ (si−1, si)

= ρτ (y) + ετ (y, x) + (r(τ)− ρτ (x))

= ρτ (y)− 1 + (r(τ)− ρτ (x))

= r(τ)

�

Let Q be a poset on the same set of elements as P . We say Q extends P if
s ≤Q t whenever s ≤P t. In other words, Q extends P if P is a spanning subposet
of Q. In the proposition above, P yx and P xy both extend P and share the same rank
function as (P, τ).

In the context of sign-graded posets with canonical labelling, we say (Q, τ) is
saturated if s, t are comparable whenever |ρτ (s)−ρτ (t)| = 1. By repeatedly applying
the decomposition

L(P, τ) = L(P yx , τ) t L(P xy , τ)

for a pair of incomparable elements x, y ∈ P such that ρτ (y) = 1 and ρτ (x) = 0,
we can uniquely decompose the Jordan-Hölder set of (P, τ) as

L(P, τ) =
⊔
Q

L(Q, τ),

where the disjoint union is taken over saturated τ -graded posets Q that extend P .
By definition of the W -polynomial,

W (P, τ) =
∑
Q

W (Q, τ).

Saturated τ -graded posets have especially nice structures as given in the following
proposition.

Proposition 7.6. Let (P, τ) be a saturated τ -graded poset with canonical labelling.
Then, (P, τ) can be written as an alternating ordinal sum of antichains:

(P, τ) = A0 ⊕0 A1 ⊕1 A2 ⊕0 · · · ⊕a Ak,

where a ∈ {0, 1}, and each Ai is a labelled antichain of certain size.

Proof. Let A0 be the set of minimal elements of P . Clearly, A0 is an antichain, and
every element of A0 has rank 0.

Let A1 be the set of elements of P that cover some elements of A0. Then, every
element of A1 has rank 1, and A1 is an antichain. Moreover, since (P, τ) is a
saturated and canonically labelled, every element of A1 covers every element of A0.

Let A2 be the set of elements of P that cover some elements of A1. Similarly,
every element of A2 has rank 0, and every element of A2 covers every element of
A1. Continuing in this fashion, we get the desired representation of (P, τ) as an
alternating ordinal sum of antichains:

(P, τ) = A0 ⊕0 A1 ⊕1 A2 ⊕0 · · · ⊕a Ak.

�
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Now we are ready to deduce the unimodality of the W -polynomial of a sign-
graded poset P . Let Sd denote the space of symmetry polynomials in R[x] with
center of symmetry d

2 . Then, Sd has a basis

Bd = {xi(1 + x)d−2i}b
d
2 c
i=0

Let Sd+ denote the nonnegative span of the basis Bd. Thus, Sd+ is a cone, and every

polynomial in Sd+ has unimodal coefficients.

Lemma 7.7. Let c, d ∈ N. Then,

ScSd ⊂ Sc+d

Sc+S
d
+ ⊂ Sc+d+ .

Suppose h ∈ Sd has positive leading coefficient and has only real and nonpositive
roots. Then, h ∈ Sd+.

Proof. Observing that

BcBd = {xi(1 + x)c−2i · xj(1 + x)d−2j : 0 ≤ i ≤ b c
2
c, 0 ≤ j ≤ bd

2
c}

= {xk(1 + x)c+d−2k : 0 ≤ k ≤ b c
2
c+ bd

2
c}

⊂ Bc+d,

we deduce the inclusions

ScSd ⊂ Sc+d

Sc+S
d
+ ⊂ Sc+d+ .

Suppose h ∈ Sd has positive leading coefficient and has only real and nonpositive
roots. Assume the leading coefficient of h is 1. Let α 6∈ {−1, 0} be a root of h.
Since h ∈ Sd, h(x) = xdh( 1

x ), so 1
α is also a root of h. Therefore, h can be written

as a product of

h(x) = xa(x+ 1)b(x− α1)(x− 1

α1
) . . . (x− αk)(x− 1

αk
)

= xa(x+ 1)b(x2 + (−α1 −
1

α1
)x+ 1) . . . (x2 + (−αk −

1

αk
)x+ 1)

Since −αi − 1
αi
≥ 2, we have x2 + (−αi − 1

αi
)x + 1 ∈ S2

+. Since x ∈ S2
+ and

x+ 1 ∈ S1
+, by the inclusion Ss+S

t
+ ⊂ Ss+t+ ,

h(x) = xa(x+ 1)b(x2 + (−α1 −
1

α1
)x+ 1) . . . (x2 + (−αk −

1

αk
)x+ 1) ∈ Sd+.

�

Theorem 7.8. Given a sign-graded poset (P, τ) with canonical labelling, let n =

|P |. Then, W (P, τ) ∈ Sn+1−r(τ)
+ .

Proof. Recall that we have

W (P, τ) =
∑
Q

W (Q, τ),

where the sum is taken over saturated τ -graded posets Q that extend P .
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By Proposition 7.6, each τ -graded poset Q that extends P can be written as an
alternating ordinal sum of antichains:

(Q, τ) = A0 ⊕0 A1 ⊕1 A2 ⊕0 · · · ⊕a Ak
By Proposition 3.12 and Proposition 5.4, for two nonempty labelled posets

(P1, ω1) and (P2, ω2), we have

W (P1 ⊕ P2, ω1 ⊕0 ω2) =
1

x
W (P1, ω1)W (P2, ω2)

W (P1 ⊕ P2, ω1 ⊕1 ω2) = W (P1, ω1)W (P2, ω2)

Since the W -polynomial of an antichain of size t is the t-th Eulerian polynomial
multiplied by x, W (Ai) is real-rooted and symmetric. By Lemma 7.7 and Corollary

7.4, W (Q, τ) is real-rooted and belongs to the cone S
n+1−r(τ)
+ .

Therefore, W (P, τ), which is the sum of W (Q, τ) ∈ Sn+1−r(τ)
+ , also belongs to

S
n+1−r(τ)
+ .

�

8. Future directions

Many questions related to the Neggers-Stanley conjecture remain unsettled. Here
we list some of these questions and encourage the reader to attempt to answer them
in the future.

1. Are the coefficients of W -polynomials of sign-graded posets log-concave? Do
sign-graded posets have real-rooted W -polynomials?

2. Are the coefficients of W -polynomials of labelled posets log-concave or unimodal
in general?

3. Given a labelled poset, does the unimodality (log-concavity) of the coefficients
of its W -polynomial imply the unimodality (log-concavity) of the coefficients of
its E-polynomial, and vice versa?

4. Is the class of labelled posets that satisfy the Neggers-Stanley conjecture closed
under the ordinal product (direct product)? Recall that the boolean poset on
the powerset P ([n]) can be written as the direct product of n 2-element chains.

5. Is real-rootedness of W -polynomials preserved under the composition operation
(Definition 5.14)? Is the unimodality (log-concavity) of the coefficients of W -
polynomials (E-polynomials) preserved under the composition operation?
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